Please wait a minute...
img img
高级检索
地球科学进展  2019, Vol. 34 Issue (8): 855-867    DOI: 10.11867/j.issn.1001-8166.2019.08.0855
综述与评述     
海洋沉积物中GDGTs和长链二醇的古气候—环境指示意义研究进展
陈立雷1,2(),李凤1,2,刘健1,2
1. 自然资源部 中国地质调查局青岛海洋地质研究所,山东 青岛 266071
2. 青岛海洋科学与技术国家实验室 海洋地质过程与环境功能实验室,山东 青岛 266061
Advances in Glycerol Dialkyl Glycerol Tetraethers and Long-Chain Alkyl Diols in the Marine Sediments: Implications for Paleoclimatic and Paleoenvironmental Changes
Lilei Chen1,2(),Feng Li1,2,Jian Liu1,2
1. Qingdao Institute of Marine Geology, China Geological Survey, Ministry of Natural Resources, Qingdao 266071, China
2. Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
 全文: PDF(2001 KB)   HTML
摘要:

海洋沉积物中星罗棋布的脂类生物标志物分布特征,确切地记录了母源生物新陈代谢和有机组分运移转化的大量信息,常被用来重建古气候—环境变化。对利用边缘海沉积物中丰富的中心脂甘油双烷基甘油四醚(core-GDGTs)和长链二醇指示晚第四纪古气候—环境变化的研究进展进行了综述。指出厘清海洋沉积物中埋藏脂类生物标志物的“源—汇”过程是进行古气候—环境重建的前提。认为利用受早期成岩作用影响较小的多项指标可以增加重建古气候变化结果的准确性。在受大河影响显著的边缘海,可以根据海洋沉积物中core-GDGTs和长链二醇指标重建的古气候记录阐明古气候—环境变化引起的海陆联动变化机制,以期为预测未来温度和降雨变化提供可靠的技术手段及坚实的理论基础。

关键词: 甘油双烷基甘油四醚长链二醇有机质源—汇古气候重建    
Abstract:

Lipid biomarkers widely dotted in marine sediments, as their distribution characteristics accurately record huge information on the metabolism of the original organisms and migration and transformation of these organic components, are often used to reconstruct the paleoclimatic and paleoenvironmental conditions. This paper reviewed the progress in the study of paleoclimatic-environmental changes during the late Quaternary using abundant core lipids Glycerol Dialkyl Glyceryl Tetraethers (GDGTs) and long-chain alkyl diols in marginal sea sediments. It is pointed out that clarifying the “source-sink” process of lipid biomarkers buried in marine sediments is a prerequisite for paleoclimatic-environmental reconstruction. It is believed that the use of multiple indicators that are less affected by early diagenesis can increase the accuracy of reconstructing paleoclimatic changes. In the large-river dominated marginal seas, the mechanism of land-sea climate coupling evolution stimulated by the paleoclimatic-environmental changes can be elucidated based on paleoclimatic records reconstructed from core lipids GDGTs and long-chain alkyl diols in marine sediments. It is hoped that this paper can provide reliable technical means and a solid theoretical basis for predicting future temperature and rainfall changes.

Key words: Glycerol dialkyl glycerol tetraethers    Long-chain alkyl diols    Organic matter    Source and sink    Paleoclimatic reconstruction.
收稿日期: 2019-02-28 出版日期: 2019-10-11
ZTFLH:  P736.4  
基金资助: 有机地球化学国家重点实验室开放基金项目“东海闽浙沿岸全新世古环境;古气候演变的生物标志物记录”(SKLOG-201621);中国博士后科学基金面上项目“东海近岸全新世有机质来源及环境变化的生物标志物记录”(2018M642622)
作者简介: 陈立雷(1987-),男,山东莱阳人,博士后,主要从事第四纪沉积与环境变化研究. E-mail:chenll@cug.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈立雷
李凤
刘健

引用本文:

陈立雷,李凤,刘健. 海洋沉积物中GDGTs和长链二醇的古气候—环境指示意义研究进展[J]. 地球科学进展, 2019, 34(8): 855-867.

Lilei Chen,Feng Li,Jian Liu. Advances in Glycerol Dialkyl Glycerol Tetraethers and Long-Chain Alkyl Diols in the Marine Sediments: Implications for Paleoclimatic and Paleoenvironmental Changes. Advances in Earth Science, 2019, 34(8): 855-867.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2019.08.0855        http://www.adearth.ac.cn/CN/Y2019/V34/I8/855

图1  典型古菌isoGDGTs以及羟基化isoGDGTs和细菌brGDGTs的分子结构图及质子化后的质荷比(m/z)
图2  海洋沉积物中GDGTs的提取离子色谱图(HPLC/MS)[11]
图3   GeoB 12806-2孔海洋沉积物中OH-GDGTs的提取离子色谱图(HPLC-APCI-MS,安捷伦6130 MSD单四极杆质谱仪)[16]
指标 公式 指示意义 参考文献
BIT BIT = G D G T - I a + G D G T - I I a + [ G D G T - I I I a ] G D G T - I a + G D G T - I I a + G D G T - I I I a + [ C r e n a r c h a e o l ] 陆源和海源有机质的相对丰度 [20]
TEX86 TEX86 = G D G T - 2 + G D G T - 3 + [ C r e n a r c h a e o l ] G D G T - 1 + G D G T - 2 + G D G T - 3 + [ C r e n a r c h a e o l ] 海水温度 [21]
TEX 86 H 和TEX 86 L

TEX 86 L = log ( G D G T - 2 + G D G T - 3 + [ C r e n a r c h a e o l ] G D G T - 1 + G D G T - 2 + G D G T - 3 + [ C r e n a r c h a e o l ] )

TEX 86 L = log ( G D G T - 2 G D G T - 1 + G D G T - 2 + G D G T - 3 )

海水温度 [22]

RI-OH

和RI-OH′

RI-OH = O H - G D G T - 1 + 2 × O H - G D G T - 2 O H - G D G T - 1 + O H - G D G T - 2

RI-OH′ = O H - G D G T - 1 + 2 × O H - G D G T - 2 O H - G D G T - 0 + O H - G D G T - 1 + O H - G D G T - 2

海水表层温度 [17]
CBT CBT =-log( G D G T - I b + G D G T - I I b G D G T - I a + G D G T - I I a ) 大气年平均温度和pH [23]
MBT MBT = G D G T - I a + G D G T - I b + [ G D G T - I c ] [ a l l ? b r G D G T s ] pH [23]
DI

DI 1 = C 28 + C 30 1,14 - d i o l s ( C 28 + C 30 1,14 - d i o l s ) + C 30 1,15 - d i o l

DI 2 = C 28 + C 30 1,14 - d i o l s ( C 28 + C 30 1,13 - d i o l s ) + ( C 28 + C 30 1,14 - d i o l s )

营养盐状况 [6,24]
LDI LDI = C 30 1,15 - d i o l C 28 1,13 - d i o l + C 30 1,13 - d i o l + C 30 1,15 - d i o l 海水表层温度 [25]
DCI DCI = C 30 1,14 - d i o l C 28 + C 30 1,14 - d i o l s 海水表层温度 [24]
DSI DSI = C 28 + C 30 1,14 - d i o l s ( C 28 + C 30 1,14 - d i o l s ) + ( C 28 : 1 + C 30 : 1 1,14 - d i o l s ) 海水表层温度 [24]
表1  应用于古气候—环境重建的四醚酯和长链二醇主要指标
图4  长链二醇的分子结构图及对应长链二醇硅烷衍生物的特征离子质荷比(m/z)
图5  海洋沉积物中长链二醇的提取离子色谱图(GC/MS) ①
1 Chen Jianfang . New geochemical proxies in paleoceanography studies[J]. Advances in Earth Science, 2002, 17(3):402-410.
1 陈建芳 . 古海洋研究中的地球化学新指标[J]. 地球科学进展, 2002, 17(3):402-410.
2 Jia Guodong , Peng Ping'an . Organic biogeochemistry and past global change[J]. Earth Science Frontiers, 2005, 12(2):179-187.
2 贾国东, 彭平安 . 有机生物地球化学与晚新生代古全球变化研究[J]. 地学前缘, 2005, 12(2):179-187.
3 Bianchi T S , Canuel E A . Chemical Biomarkers in Aquatic Ecosystems[M]. Princeton: Princeton University Press, 2012.
4 Xie Shucheng , Huang Xianyu , Yang Huan , et al . An overview on microbial proxies for the reconstruction of past global environmental change[J]. Quaternary Sciences, 2013, 33(1):1-18.
4 谢树成, 黄咸雨, 杨欢, 等 . 示踪全球环境变化的微生物代用指标[J]. 第四纪研究, 2013, 33(1):1-18.
5 Hu Jianfang , Peng Ping'an . An overview and perspectives on organic geochemistry[J]. Acta Sedimentologica Sinica, 2017, 35(5):968-980.
5 胡建芳, 彭平安 . 有机地球化学研究新进展与展望[J]. 沉积学报, 2017, 35(5):968-980.
6 Rampen S W , Schouten S , Koning E , et al . A 90 kyr upwelling record from the northwestern Indian Ocean using a novel long-chain diol index[J]. Earth and Planetary Science Letters, 2008, 276(1/2):207-213.
7 Wang Pinxian , Cheng Xinrong . The distribution of calcareous nannofossils in the East China Sea[J]. Acta Oceanologica Sinica, 1988, 10(1):76-85.
7 汪品先, 成鑫荣 . 东海底质中钙质超微化石的分布[J]. 海洋学报, 1988, 10(1):76-85.
8 Zhao Meixun , Li Dawei , Xing Lei . Using archaea biomarker index TEX86 as a paleo-sea surface temperature proxy[J]. Marine Geology and Quaternary Geology, 2009, 29(3):75-84.
8 赵美训, 李大伟, 邢磊 . 古菌生物标志物古海水温度指标TEX86研究进展[J]. 海洋地质与第四纪地质, 2009, 29(3):75-84.
9 Yao Peng , Yu Zhigang , Zhao Meixun . Advances in application of GDGT in global climate change study[J]. Periodical of Ocean University of China, 2011, 41(5):71-78.
9 姚鹏, 于志刚, 赵美训 . GDGT在全球气候变化研究中的应用进展[J]. 中国海洋大学学报:自然科学版, 2011, 41(5):71-78.
10 Schouten S , Hopmans E C , Sinninghe Damsté J S . The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review[J]. Organic Geochemistry, 2013, 54:19-61.
11 Chen L L , Liu J , Wang J S , et al . Sources and distribution of tetraether lipids in sediments from the Zhejiang-Fujian coastal mud area, China, over the past 160 years: Implications for paleoclimate change[J]. Organic Geochemistry, 2018, 121:114-125.
12 Lincoln S A , Wai B , Eppley J M , et al . Planktonic Euryarchaeota are a significant source of archaeal tetraether lipids in the ocean[J]. Proceedings of the National Academy of Sciences, 2018, 111(27):9 858-9 863.
13 Sinninghe Damsté J S , Hopmans E C , Pancost R D , et al . Newly discovered non-isoprenoid glycerol dialkyl glycerol tetraether lipids in sediments[J]. Chemical Communications, 2000, 17(48): 1 683-1 684.
14 Weijers J W H , Schouten S , Hopmans E C , et al . Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits[J]. Environmental Microbiology, 2006, 8(4):648-657.
15 Peterse F , Kim J H , Schouten S , et al . Constraints on the application of the MBT/CBT palaeothermometer at high latitude environments (Svalbard, Norway)[J]. Organic Geochemistry, 2009, 40(6):692-699.
16 Liu X L , Lipp J S , Simpson J H , et al . Mono- and dihydroxyl glycerol dibiphytanyl glycerol tetraethers in marine sediments: Identification of both core and intact polar lipid forms[J]. Geochimica et Cosmochimica Acta, 2012, 89:102-115.
17 Lü X X , Liu X L , Elling F J , et al . Hydroxylatedisoprenoid GDGTs in Chinesecoastal seas and their potential asa paleotemperature proxy for mid-to-low latitude marginal seas[J]. Organic Geochemistry, 2015, 89:31-43.
18 Zhu C , Wakeham S G , Elling F J , et al . Stratification of archaeal membrane lipids in the ocean and implications for adaptation and chemotaxonomy of planktonic archaea[J]. Environmental Microbiology, 2016, 18(12):4 324-4 336.
19 Yang H , Xiao W , S?owakiewicz M , et al . Depth-dependent variation of archaeal ether lipids along soil and peat profiles from southern China: Implications for the use of isoprenoidal GDGTs as environmental tracers[J]. Organic Geochemistry, 2019, 128:42-56.
20 Hopmans E C , Weijers J W H , Schefu? E , et al . A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids[J]. Earth and Planetary Science Letters, 2004, 224(1/2):107-116.
21 Schouten S , Hopmans E C , Schefu? E , et al . Distributional variations in marine crenarchaeotal membrane lipids: A new tool for reconstructing ancient sea water temperatures?[J]. Earth and Planetary Science Letters, 2002, 204(1/2):265-274.
22 Kim J H , van der Meer J , Schouten S , et al . New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface temperature reconstructions[J]. Geochimica et Cosmochimica Acta, 2010, 74(16):4 639-4 654.
23 Weijers J W H , Schouten S , van den Donker J C , et al . Environmental controls on bacterial tetraether membrane lipid distribution in soils[J]. Geochimica et Cosmochimica Acta, 2007, 71(3):703-713.
24 Rampen S W , Willmott V , Kim J H , et al . Evaluation of long chain 1,14-alkyl diols in marine sediments as indicators for upwelling and temperature[J]. Organic Geochemistry, 2014, 76:39-47.
25 Rampen S W , Willmott V , Kim J H , et al . Long chain 1,13- and 1,15-diols as a potential proxy for palaeotemperature reconstruction[J]. Geochimica et Cosmochimica Acta, 2012, 84:204-216.
26 Zhu C , Weijers J W H , Wagner T , et al . Sources and distributions of tetraether lipids in surface sediments across a large river river-dominated continental margin[J]. Organic Geochemistry, 2011, 42(4):376-386.
27 Wuchter C , Schouten S , Wakeham S G , et al . Archaeal tetraether membrane lipid fluxes in the northeastern Pacific and the Arabian Sea: Implications for TEX86 paleothermometry[J]. Paleoceanography, 2006, 21(4)PA4208.
28 Xing L , Zhao M X , Gao W X , et al . Multiple proxy estimates of source and spatial variation in organic matter in surface sediments from the southern Yellow Sea[J]. Organic Geochemistry, 2014, 76:72-81.
29 Xing L , Sachs J P , Gao W X , et al . TEX86 paleothermometer as an indication of bottom water temperature in the Yellow Sea[J]. Organic Geochemistry, 2015, 86:19-31.
30 Sinninghe Damsté J S . Spatial heterogeneity of sources of branched tetraethers in shelf systems: The geochemistry of tetraethers in the Berau River delta (Kalimantan, Indonesia)[J]. Geochimica et Cosmochimica Acta, 2016, 186:13-31.
31 Wei Hailun , Cai Jingong , Wang Guoli , et al . The diversity of organic matter in marine sediments and the suspiciousness of source parameters: A review[J]. Advances in Earth Science, 2018, 33(10):1 024-1 033.
31 韦海伦, 蔡进功, 王国力, 等 . 海洋沉积物有机质赋存的多样性与物源指标的多疑性综述[J].地球科学进展, 2018, 33(10):1 024-1 033.
32 Versteegh G J M , Bosch H J , de Leeuw J W . Potential palaeoenvironmental information of C24 to C36 mid-chain diols, keto-ols and mid-chain hydroxy fatty acids: A critical review[J]. Organic Geochemistry, 1997, 27(1):1-13.
33 Lattaud J , Kim J H , De Jonge C , et al . The C32 alkane-1,15-diol as a tracer for riverine input in coastal seas[J]. Geochimica et Cosmochimica Acta, 2017, 202:146-158.
34 Gal J K , Kim J H , Shin K H . Distribution of long chain alkyl diols along a south-north transect of the northwestern Pacific region: Insights into a paleo sea surface nutrient proxy[J]. Organic Geochemistry, 2018, 119:80-90.
35 Sinninghe Damsté J S , Rampen S W , Irene W , et al . A diatomaceous origin for long-chain diols and mid-chain hydroxy methyl alkanoates widely occurring in quaternary marine sediments: Indicators for high-nutrient conditions[J]. Geochimica et Cosmochimica Acta, 2003, 67(7):1 339-1 348.
36 Rampen S W , Schouten S , Wakeham S G , et al . Seasonal and spatial variation in the sources and fluxes of long chain diols and mid-chain hydroxy methyl alkanoates in the Arabian Sea[J]. Organic Geochemistry, 2007, 38(2):165-179.
37 Hu J , Wang X H . Progress on upwelling studies in the China seas[J]. Reviews of Geophysics, 2016, 54:653-673.
38 Guo Shujin , Sun Jun , Dai Minhan , et al . Phytoplankton assemblages in East China Sea in winter 2009[J]. Acta Ecologica Sinica,2012, 32(10):3 266-3 278.
38 郭术津, 孙军, 戴民汉, 等 . 2009年冬季东海浮游植物群集[J]. 生态学报, 2012, 32(10):3 266-3 278.
39 Guo S J , Feng Y Y , Wang L , et al . Seasonal variation in the phytoplankton community of a continental-shelf sea: The East China Sea[J]. Marine Ecology Progress Series, 2014, 516:103-126.
40 Pelejero C , Calvo E . The upper end of the U 37 K ' temperature calibration revisited[J]. Geochemistry Geophysics Geosystems, 2003, 4(2):1 014-1 025.
41 Wuchter C , Schouten S , Coolen M J L , et al . Temperature‐dependent variation in the distribution of tetraether membrane lipids of marine Crenarchaeota: Implications for TEX86 paleothermometry[J]. Paleoceanography, 2004, 19:PA4028.
42 Lü X X , Yang H , Song J M , et al . Sources and distribution of isoprenoid Glycerol Dialkyl Glycerol Tetraethers (GDGTs) in sediments from the east coastal sea of China: Application of GDGT-based paleothermometry to a shallow marginal sea[J]. Organic Geochemistry, 2014, 75:24-35.
43 Zhou H D , Hu J F , Spiro B , et al . Glycerol dialkyl glycerol tetraethers in surficial coastal and open marine sediments around China: Indicators of sea surface temperature and effects of their sources[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 395:114-121.
44 Jonas A S , Schwark L , Bauersachs T . Late Quaternary water temperature variations of the Northwest Pacific based on the lipid paleothermometers T E X 86 H , U 37 K ' and LDI[J]. Deep-Sea Research Part I, 2017, 125:81-93.
45 Kim J H , Ludwig W , Schouten S , et al . Impact of flood events on the transport of terrestrial organic matter to the ocean: A study of the Têt River (SW France) using the BIT index[J]. Organic Geochemistry, 2007, 38(10):1 593-1 606.
46 Lipp J S , Hinrichs K U . Structural diversity and fate of intact polar lipids in marine sediments[J]. Geochimica et Cosmochimica Acta, 2009, 73(22):6 816-6 833.
47 Liu X L , Lipp J S , Hinrichs K U . Distribution of intact and core GDGTs in marine sediments[J]. Organic Geochemistry, 2011, 42(4):368-375.
48 Lengger S K , Hopmans E C , Sinninghe Damsté J S , et al . Impact of sedimentary degradation and deep water column production on GDGT abundance and distribution in surface sediments in the Arabian Sea: Implications for the TEX86 paleothermometer[J]. Geochimica et Cosmochimica Acta, 2014, 142:386-399.
49 Elling F J , K?nneke M , Nicol G W , et al . Chemotaxonomic characterisation of the thaumarchaeal lipidome[J]. Environmental Microbiology, 2017, 19(7):2 681-2 700.
50 Dong L , Jia G D , Li Q Y , et al . Intact polar glycosidic GDGTs in sediments settle from water column as evidenced from downcore sediment records[J]. Chemical Geology, 2018, 501:12-18.
51 Peterse F , van der Meer J , Schouten S , et al . Revised calibration of the MBT-CBT paleotemperature proxy based on branched tetraether membrane lipids in surface soils[J]. Geochimica et Cosmochimica Acta, 2012, 96:215-229.
52 De Jonge C , Stadnitskaia A , Hopmans E C , et al . In situ produced branched glycerol dialkyl glycerol tetraethers in suspended particulate matter from the Yenisei River, Eastern Siberia[J]. Geochimica et Cosmochimica Acta, 2014, 125:476-491.
53 Yang H , Pancost R D , Dang X Y , et al . Correlations between microbial tetraether lipids and environmental variables in Chinese soils: Optimizing the paleo-reconstructions in semi-arid and arid regions[J]. Geochimica et Cosmochimica Acta, 2014, 126:49-69.
54 Wang J X , Wei Y L , Wang P , et al . Unusually low TEX86 values in the transitional zone between Pearl River estuary and coastal South China Sea: Impact of changing archaeal community composition[J]. Chemical Geology, 2015, 402:18-29.
55 Dang X , Yang H , Naafs B D A , et al . Evidence of moisture control on the methylation of branched glycerol dialkyl glycerol tetraethers in semi-arid and arid soils[J]. Geochimica et Cosmochimica Acta, 2016, 189:24-36.
56 Weijers J W H , Schefu? E , Schouten S , et al . Coupled thermal and hydrological evolution of tropical Africa over the last deglaciation[J]. Science, 2007, 315(5 819):1 701-1 704.
57 Zell C , Kim J H , Hollander D , et al . Sources and distributions of branched and isoprenoid tetraether lipids on the Amazon shelf and fan: Implications for the use of GDGT-based proxies in marine sediments[J]. Geochimica et Cosmochimica Acta, 2014, 139:293-312.
58 De Jonge C , Stadnitskaia A , Hopmans E C , et al . In situ produced branched glycerol dialkyl glycerol tetraethers in suspended particulate matter from the Yenisei River, Eastern Siberia[J]. Geochimica et Cosmochimica Acta, 2014, 125:476-491.
59 Naafs B D A , Gallego-Sala A V , Inglis G N , et al . Refining the global branched glycerol dialkyl glycerol tetraether (brGDGT) soil temperature calibration[J]. Organic Geochemistry, 2017, 106:48-56.
60 Rampen S W , Schouten S , Schefu? E , et al . Impact of temperature on long chain diol and mid-chain hydroxy methyl alkanoate composition in Proboscia diatoms: Results from culture and field studies[J]. Organic Geochemistry, 2009, 40(11):1 124-1 131.
61 de Bar M W , Stolwijk D J , McManus J F , et al . A Late Quaternary climate record based on long chain diol proxies from the Chilean margin[J]. Climate of the Past, 2018, 14:1 783-1 803.
62 Ge Huangmin , Zhang Chuanlun . Advances in GDGT research in Chinese Marginal Seas: A review[J]. Science in China(Series D), 2016, 46(4):473-488.
62 葛黄敏, 张传伦 . 中国边缘海环境中GDGT的研究进展[J]. 中国科学:D辑, 2016, 46(4):473-488.
63 Zhang C , Peng P , Zhao M , et al . Bio-organic geochemistry research in China: Advances, opportunities and challenges[J]. Science in China (Series D), 2018, 61:1 775-1 780.
64 Kang S , Shin K H , Kim J H . Occurrence and distribution of hydroxylated isoprenoid glycerol dialkyl glycerol tetraethers (OH-GDGTs) in the Han River system, South Korea[J]. Acta Geochimica, 2017, 36(3):367-369.
65 Park E , Hefter J , Fischer G , et al . Seasonality of archaeal lipid flux and GDGT-based thermometry in sinking particles of high-latitude oceans: Fram Strait (79° N) and Antarctic Polar Front (50° S)[J]. Biogeosciences, 2019, 16:2 247-2 268.
66 Yang Y , Gao C , Dang X Y , et al . Assessing hydroxylated isoprenoid GDGTs as a paleothermometer for the tropical South China Sea[J]. Organic Geochemistry, 2018, 115:156-165.
67 Davtian N , Ménot G , Fagault Y , et al . Western mediterranean sea paleothermometry over the last glacial cycle based on the novel RI-OH index[J]. Paleoceanography and Paleoclimatology, 2019, 34:616-634.
68 de Bar M W , Rampen S W , Hopmans E C , et al . Constraining the applicability of organic paleotemperature proxies for the last 90 Myrs[J]. Organic Geochemistry, 2019, 128:122-136.
69 Weijers J W H , Schouten S , Sluijs A , et al . Warm Arctic continents during the Palaeocene-Eocene thermal maximum[J]. Earth and Planetary Science Letters, 2007, 261(1/2):230-238.
70 Schouten S , Eldrett J S , Greenwood D R , et al . Onset of long term cooling of Greenland near the Eocene-Oligocene boundary as revealed by branched tetraether lipids[J]. Geology, 2008, 36(2):147-150.
71 Donders T H , Weijers J W H , Munsterman D K , et al . Strong climate coupling of terrestrial and marine environments in the Miocene of northwest Europe[J]. Earth and Planetary Science Letters, 2009, 281(3/4):215-225.
72 Bendle J A , Weijers J W H , Maslin M A , et al . Major changes in glacial and Holocene terrestrial temperatures and sources of organic carbon recorded in the Amazon fan by tetraether lipids[J]. Geochemistry Geophysics Geosystems, 2010, 11(12): Q12007. DOI:10.1029/2010GC003308 .
doi: 10.1029/2010GC003308
73 Keating-Bitonti C R , Ivany L C , Affek H P , et al . Warm, not super-hot, temperatures in the early Eocene subtropics[J]. Geology, 2011, 39:771-774.
74 Pross J , Contreras L , Bijl P K , et al . Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch[J]. Nature, 2012, 488(7 409):73-77.
75 Rueda G , Fietz S , Rosell-Melé A . Coupling of air and sea surface temperatures in the eastern Fram Strait during the last 2000 years[J]. The Holocene, 2013, 23:692-698.
76 Crampton-Flood E D , Peterse F , Munsterman D , et al . Using tetraether lipids archived in North Sea Basin sediments to extract North Western European Pliocene continental air temperatures[J]. Earth and Planetary Science Letters, 2018, 490:193-205.
77 Hanna A J M , Shanahan T M , Allison M A , et al . A multi-proxy investigation of late-Holocene temperature change and climate-driven fluctuations in sediment sourcing: Simpson Lagoon, Alaska[J]. The Holocene, 2018, 28:984-997.
78 Yang S Y , Bi L , Li C , et al . Major sinks of the Changjiang (Yangtze River)-derived sediments in the East China Sea during the late Quaternary, in River-dominated Shelf Sediments of East Asian Seas[M] //Clift P D , Harff J , Wu J , al et , eds . London: Geological Society, Special Publications, 2015, 429:137-152.
79 Zhao J T , Li J , Cai F , et al . Sea surface temperature variation during the last deglaciation in the southern Okinawa Trough: Modulation of high latitude teleconnections and the Kuroshio Current[J]. Progress in Oceanography, 2015, 138:238-248.
80 Dayang Hung . The Application of TEX86 and BIT Organic Biomarkers to Reconstruct Climate Changes in the East China Sea over the Past 8000 Years[D]. Keelung: Taiwan Ocean University, 2013.
80 洪大扬 . 应用TEX86与BIT有机生物指标重建过去8000年之东海气候变化[D]. 基隆:中国台湾海洋大学, 2013.
81 Ge Huangmin , Zhang Chuanlun , Versteegh G J M , et al . Evolution of the East China Sea sedimentary environment in the past 14 kyr: Insights from tetraethers-based proxies[J]. Science in China(Series D), 2016, 46(2):127-140.
81 葛黄敏, 张传伦, Versteegh G J M , 等 . 中国东海过去1.4万年以来的沉积演化:基于脂类标记物的古环境重建[J]. 中国科学:D辑, 2016, 46(2):127-140.
82 de Leeuw J W , Rijpstra W I C , Schenck P A . The occurrence and identification of C30, C31 and C32 alkan-1,15-diols and alkan-15-one-1-ols in Unit I and Unit II Black Sea sediments[J]. Geochimica et Cosmochimica Acta, 1981, 45(11):2 281-2 285.
83 Lattaud J , Lo L , Huang J J , et al . A comparison of Late Quaternary organic proxy-based paleotemperature records of the central Sea of Okhotsk[J]. Paleoceanography and Paleoclimatology, 2018. DOI:10.1029/2018PA003388 .
doi: 10.1029/2018PA003388
84 Zhu X W , Jia G D , Mao S Y , et al . Sediment records of long chain alkyl diols in an upwelling area of the coastal northern South China Sea[J]. Organic Geochemistry, 2018, 121:1-9.
85 Lopes dos Santos R A , Spooner M I , Barrows T T , et al . Comparison of organic ( U 37 K ' , TEX 86 H , LDI) and faunal proxies (foraminiferal assemblages) for reconstruction of late Quaternary sea surface temperature variability from offshore southeastern Australia[J]. Paleoceanography, 2013, 28(3):377-387.
86 Rodrigo-Gámiz M , Martínez-Ruiz F , Rampen S W , et al . Sea surface temperature variations in the western Mediterranean Sea over the last 20 kyr: A dual-organic proxy ( U 37 K ' and LDI) approach[J]. Paleoceanography, 2014, 29(2):87-98.
87 Zhang Hailong , Tao Shuqin , Yu Meng , et al . A review on techniques and applications of biomarker compound-specific radiocarbon analysis[J]. Advances in Earth Science, 2017, 32(11):1 193-1 203.
87 张海龙, 陶舒琴, 于蒙, 等 . 生物标志物单体放射性碳同位素分析技术的发展[J]. 地球科学进展, 2017, 32(11):1 193-1 203.
[1] 潘根兴, 丁元君, 陈硕桐, 孙景玲, 冯潇, 张晨, 郑聚锋, 张旭辉, 程琨, 刘晓雨, 卞荣军, 李恋卿. 从土壤腐殖质分组到分子有机质组学认识土壤有机质本质[J]. 地球科学进展, 2019, 34(5): 451-470.
[2] 张咏华,吴自军. 陆架边缘海沉积物有机碳矿化及其对海洋碳循环的影响[J]. 地球科学进展, 2019, 34(2): 202-209.
[3] 宗秀兰, 宋友桂, 李越. 蚯蚓方解石颗粒——一种新的古气候信息记录载体[J]. 地球科学进展, 2018, 33(9): 983-993.
[4] 韦海伦, 蔡进功, 王国力, 王学军. 海洋沉积物有机质赋存的多样性与物源指标的多疑性综述[J]. 地球科学进展, 2018, 33(10): 1024-1033.
[5] 任成喆, 袁华茂, 宋金明, 李学刚, 李宁, 段丽琴. 海洋环境中的氨基糖及其在有机质循环过程中的指示作用[J]. 地球科学进展, 2017, 32(9): 959-971.
[6] 赵转军, 杨艳艳, 庞瑜, 赵立芳, 管宇立, 张兆虎. 铁碳共沉作用对土壤重金属的吸附性能研究进展[J]. 地球科学进展, 2017, 32(8): 867-874.
[7] 蔡郁文, 王华建, 王晓梅, 何坤, 张水昌, 吴朝东. 铀在海相烃源岩中富集的条件及主控因素[J]. 地球科学进展, 2017, 32(2): 199-208.
[8] 沈传波, 刘泽阳, 肖凡, 胡迪, 杜嘉祎. 石油系统Re-Os同位素体系封闭性研究进展[J]. 地球科学进展, 2015, 30(2): 187-195.
[9] 刘贤赵, 张勇, 宿庆, 田艳林, 全斌, 王国安. 现代陆生植物碳同位素组成对气候变化的响应研究进展[J]. 地球科学进展, 2014, 29(12): 1341-1354.
[10] 武玉, 徐刚, 吕迎春, 邵宏波. 生物炭对土壤理化性质影响的研究进展[J]. 地球科学进展, 2014, 29(1): 68-79.
[11] 李朝柱,张晓,许元斌,饶志国. 黄土高原地区晚中新世以来陆地植被C3/C4植物相对丰度演化研究进展[J]. 地球科学进展, 2012, 27(3): 284-291.
[12] 李启权,王昌全,岳天祥,张文江,余勇. 基于神经网络模型的中国表层土壤有机质空间分布模拟方法[J]. 地球科学进展, 2012, 27(2): 175-184.
[13] 朱茂旭,史晓宁,杨桂朋,李铁,吕仁燕. 海洋沉积物中有机质早期成岩矿化路径及其相对贡献[J]. 地球科学进展, 2011, 26(4): 355-364.
[14] 赵同谦,张华,徐华山,贺玉晓. 黄河湿地孟津段不同植物群落类型土壤有机质含量变化特征研究[J]. 地球科学进展, 2008, 23(6): 638-643.
[15] 卢龙飞,蔡进功,包于进,李从先,杨守业,范代读. 粘土矿物保存海洋沉积有机质研究进展及其碳循环意义[J]. 地球科学进展, 2006, 21(9): 931-937.