Please wait a minute...
img img
高级检索
地球科学进展  2018, Vol. 33 Issue (9): 958-968    DOI: 10.11867/j.issn.1001-8166.2018.09.0958
研究论文     
近40年东北地区积雪日数时空变化特征及其与气候要素的关系
张晓闻, 臧淑英*, 孙丽
哈尔滨师范大学寒区地理环境监测与空间信息服务黑龙江省重点实验室,哈尔滨师范大学,黑龙江 哈尔滨 150025
Spatial-Temporal Variation Characteristics of Snow Cover Days in Northeast China in the Past 40 Years and Their Relationship with Climatic Factors
Xiaowen Zhang, Shuying Zang, Li Sun
Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China
 全文: PDF(5847 KB)   HTML
摘要:

通过对1979—2016年中国积雪深度数据提取积雪日数,结合气温、降水量、湿度、风速和日照等气象资料,利用传统统计学方法和GIS空间分析方法研究东北地区近40 年来积雪日数的时空变化特征,并分析其与气候要素的关系。结果表明:近40 年来东北地区年均积雪日数均值为93天,呈增加趋势,速率为0.6 d/10a,最大年均积雪日数出现在2013年。春季平均积雪日数主导了全年平均积雪日数的变化情况。受纬度、地形和海陆热力差异的影响,东北地区积雪日数由北到南逐渐减少,最高值出现在北部大兴安岭地区。降水量与积雪日数呈正相关,气温与其呈负相关。年尺度上来看气候要素与积雪日数相关性大小为:气温>湿度>降水>风速>日照。气温是影响东北地区年均积雪日数的主要因素。

关键词: 东北地区积雪日数时空变化气候变化    
Abstract:

The snow cover days were extracted out of the snow data on depth distribution from 1979 to 2016 in China, combined with temperature, precipitation, humidity, sunlight and wind speed and other meteorological data, by taking advantage of traditional statistical methods and GIS spatial analysis methods, to study the temporal and spatial variation characteristics of snow cover days in northeast China region in the past 40 years, and to analyze their relationship with climatic factors. It turned out that the average annual snow cover days were 93 d in northeast China region, having an increasing trend, the rate was 0.6 d/10a, and the maximum average annual snow cover days appeared in 2013. Snow cover days in spring dominate the changes of the average snow days all year around. The snow cover days in northeast China region were affected by latitude, geography and land-sea thermal difference, which gradually decreased from north to south, and the maximum value appeared in the Da Hinggan area. Precipitation, humidity and snow cover days are positive correlation, and temperature, wind speed and sunlight are negative correlation. The correlation between climatic elements and snow cover days is as follows: temperature>humidity>wind speed>sunlight>precipitation. The influence of climatic elements on the seasonally frozen ground region is more significant than that in the permafrost region. The results show that temperature is the main factor that affects the average annual snow cover days in northeast China region.

Key words: Northeast China    Snow cover days    Spatial-temporal variations    Climate change.
收稿日期: 2018-06-08 出版日期: 2018-10-24
ZTFLH:  P426.63+5  
基金资助: *国家自然科学基金项目“气候变暖背景下东北多年冻土退化对温室气体排放的影响”(编号:41571199);中央高校基本科研业务费专项资金“中国东北冻土区多环芳烃污染历史与输送特征”(编号:2017-KYYWF-0139)资助.
通讯作者: 臧淑英   
作者简介:

作者简介:张晓闻(1994-),女,黑龙江哈尔滨人,硕士研究生,主要从事积雪与冻土变化研究.E-mail:Zhang1204861662@outlook.com

服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张晓闻
臧淑英
孙丽

引用本文:

张晓闻, 臧淑英, 孙丽. 近40年东北地区积雪日数时空变化特征及其与气候要素的关系[J]. 地球科学进展, 2018, 33(9): 958-968.

Xiaowen Zhang, Shuying Zang, Li Sun. Spatial-Temporal Variation Characteristics of Snow Cover Days in Northeast China in the Past 40 Years and Their Relationship with Climatic Factors. Advances in Earth Science, 2018, 33(9): 958-968.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2018.09.0958        http://www.adearth.ac.cn/CN/Y2018/V33/I9/958

图1  研究区
图2  1979—2016年东北地区积雪日数平均值(a)和最大值(b)年际变化
图3  东北地区平均积雪日数值(a)和最大值(b)突变检验
图4  近40年东北地区积雪日数年代变化
图5  近40年东北地区积雪日数年代变化距平
图6  1979—2016年东北地区积雪日数不同季节的年际(a)和平均年(b)变化
图7  东北地区积雪日数春季突变检验
图8  近40年东北地区积雪日数空间分布(a)和变化趋势(b)
图9  近40年东北地区年均积雪深度变化趋势空间分布
图10  积雪日数与气候要素的散点分布
[1] Zhao Chunyu, Yan Xiaoyu, Li Dongliang, et al. The variation of snow cover and its relationship to air temperature and precipitation in Liaoning Province during 1961-2007[J]. Journal of Glaciology and Geocryology, 2010, 32(3): 461-468.
[1] [赵春雨, 严晓瑜, 李栋梁, 等. 1961—2007年辽宁省积雪变化特征及其与温度、降水的关系[J]. 冰川冻土, 2010, 32(3): 461-468.]
[2] Lei Jun, Fang Zhifang.A comparison study on snow cover of the conventional meteorological observation and its variational tendency in Qinghai[J]. Region Plateau Meteorology, 2008, 27(1): 58-67.
[2] [雷俊, 方之芳. 青海地区常规观测积雪资料对比及积雪变化趋势研究[J]. 高原气象, 2008, 27(1): 58-67.]
[3] Chen Chunyan, Li Yi, Li Qihang.Snow cover depth in Rümqi region, Xinjiang: Evolution and response to climate change[J]. Journal of Glaciology and Geocryology, 2015, 37(3): 587-594.
doi: 10.7522/j.issn.1000-0240.2015.0066
[3] [陈春艳, 李毅, 李奇航. 新疆乌鲁木齐地区积雪深度演变规律及对气候变化的响应[J]. 冰川冻土, 2015, 37(3): 587-594.]
doi: 10.7522/j.issn.1000-0240.2015.0066
[4] Zhang Zhifu, Xi Shuang, Yu Yu, et al. Climatic characteristics and variations of the gelivation weathers in China during 1961-2012[J]. Journal of Glaciology and Geocryology, 2015, 37(6): 1 435-1 442.
[4] [张志富, 希爽, 余予, 等. 1961—2012年中国5类主要冰冻天气的气候及变化特征[J]. 冰川冻土, 2015, 37(6): 1 435-1 442.]
[5] Chu Duo, Yang Yong, Luobu Jiancan, et al. The variations of snow cover days over the Tibetan Plateau during 1981-2010[J]. Journal of Glaciology and Geocryology, 2015, 37(6): 1 461-1 472.
doi: 10.7522/j.isnn.1000-0240.2015.0162
[5] [除多, 杨勇, 罗布坚参, 等. 1981—2010年青藏高原积雪日数时空变化特征分析[J]. 冰川冻土, 2015, 37(6):1 461-1 472.]
doi: 10.7522/j.isnn.1000-0240.2015.0162
[6] Zhang Yinsheng, Ma Ning.Spatiotemporal variability of snow cover and snow water equivalent in the last three decades over Eurasia[J]. Journal of Hydrology, 2018, 559: 238-251.
[7] Bai Shuying, Shi Jianqiao, Shen Weishou, et al. Spatial temporal variation of snow depth in Tibet and its response to climatic change in the past 30 years[J]. Remote Sensing for Land and Resources, 2014, 26(1): 144-151.
doi: 10.6046/gtzyyg.2014.01.25
[7] [白淑英, 史建桥, 沈渭寿, 等. 近30年西藏雪深时空变化及其对气候变化的响应[J]. 国土资源遥感, 2014 , 26(1): 144-151.]
doi: 10.6046/gtzyyg.2014.01.25
[8] Hu Liequn, Li Shuai, Liang Fengchao.Analysis of the variation characteristics of snow covers in Xinjiang region during recent 50 years[J]. Journal of Glaciology and Geocryology, 2013, 35(4): 793-800.
doi: 10.7522/j.issn.1000-0240.2013.0090
[8] [胡列群, 李帅, 梁凤超. 新疆区域近50 a积雪变化特征分析[J]. 冰川冻土, 2013, 35(4):793-800.]
doi: 10.7522/j.issn.1000-0240.2013.0090
[9] Sun Xiaorui, Gao Yong, Ding Yanlong, et al. Spatial and temporal distribution of snow cover and its correlation with climatic factors in Inner Mongolia[J]. Journal of Inner Mongolia Forestry Science & Technology, 2017, 43(2): 10-15.
[9] [孙晓瑞, 高永, 丁延龙, 等.内蒙古积雪时空分布特征及其与气候因子的相关性[J]. 内蒙古林业科技, 2017, 43(2): 10-15.]
[10] Dan Singh, Vikas Juyal, Vikas Sharma, et al. Consistent seasonalSnow snow Cover cover Depth depth and duration Variability variability over the Western Himalayas (WH)[J]. Journal of Earth System Science, 2016, 125: 1 451-1 461.
[11] Geoffrey Klein, Yann Vitasse, Christian Rixen, et al. Shorter snow cover duration since 1970 in the Swiss Alps due to earlier snowmelt more than to later snow outset[J]. Climatic Change, 2016, 139: 637-649.
[12] Shamshagul Mashtayeva, Dai Liyun, Che Tao, et al. Spatial and temporal variability of snow depth derived from passive microwave remote sensing data in Kazakhstan[J]. Journal of Meteorological Research, 2016, 30: 1 033-1 043.
[13] Che Tao, Li Xin, Jin Rui, et al. Snow depth derived from passive microwave remote-sensing data in China[J]. Annals of Glaciology, 2008, 49: 145-154.
doi: 10.3189/172756408787814690
[14] Dai Liyun, Che Tao, Wang Jian, et al. Snow depth and snow water equivalent estimation from AMSR-E data based on a priori snow characteristics in Xinjiang[J]. China Remote Sensing of Environment, 2012, 127: 14-29.
[15] An Di, Li Dongliang, Yuan Yun, et al. Contrast between snow cover data of different definitions[J]. Journal of Glaciology and Geocryology, 2009, 31(6): 1 019-1 027.
[15] [安迪, 李栋梁, 袁云, 等. 基于不同积雪日定义的积雪资料比较分析[J]. 冰川冻土, 2009, 31(6): 1 019-1 027.]
[16] Yu Yansheng, Chen Xingwei.Division of variation process of high and low runoff based on Mann-Kendall method[J]. Journal of Water Resources and Water Engineering, 2013, 24(1): 60-63.
[16] [于延胜, 陈兴伟. 基于Mann-Kendall 法的径流丰枯变化过程划分[J]. 水资源与水工程学报, 2013, 24(1): 60-63.]
[17] Wei Fengying.Contemporary Techniques for Climatic Prognostcation. Diagnosis and Statistics[M]. Beijing: China Meteorological Press, 2007: 121-123.
[17] [魏凤英. 现代气候统计诊断与预测技术[M]. 北京:气象出版社, 2007: 121-123.]
[18] Zhou Xiujie, Wang Fengling, Wu Yuying, et al. Analysis of temperature change characteristics of Heilongjiang Province Northeast China and whole country in recent 60 years[J]. Journal of Natural Disasters, 2013, 22(2): 124-129.
[18] [周秀杰, 王凤玲, 吴玉影, 等. 近60年来黑龙江省与东北及全国气温变化特点分析[J]. 自然灾害学报, 2013, 22(2): 124-129.]
[19] Hou Wei, Chen Yu, Li Ying, et al. Climatic characteristics over China in 2013[J]. Meteorological Monthly, 2014, 40(4) : 483-493.
[19] [侯威, 陈峪, 李莹, 等. 2013年中国气候概况[J]. 气象, 2014, 40(4): 483-493.]
[20] Du Jun, Bian Duo, Hu Jun, et al. Climatic change of sunshine duration and its influencing factors over Tibet during the last 35 years[J]. Acta Geographica Sinica, 2007, 62(5): 492-500.
doi: 10.3321/j.issn:0375-5444.2007.05.005
[20] [杜军, 边多, 胡军, 等. 西藏高原近35年日照时数的变化特征及其影响因素[J]. 地理学报, 2007, 62(5): 492-500.]
doi: 10.3321/j.issn:0375-5444.2007.05.005
[21] Zhang Qing.Some characteristics of weather/climate in China in 1998[J]. Meteorological Monthly, 1999, 25(4): 26-29.
doi: 10.7519/j.issn.1000-0526.1999.4.005
[21] [张清. 1998年我国天气气候特点[J]. 气象, 1999, 25(4): 26-29.]
doi: 10.7519/j.issn.1000-0526.1999.4.005
[22] Sun Chenghu, Ren Fumin, Zhou Bing, et al. Featuers and possible causes for the low temperature in winter 2011/2012[J]. Meteorological Monthly, 2012, 38(7): 884-889.
doi: 10.7519/j.issn.1000-0526.2012.7.015
[22] [孙丞虎, 任福民, 周兵, 等. 2011/2012年冬季我国异常低温特征及可能成因分析[J]. 气象, 2012, 38(7): 884-889.]
doi: 10.7519/j.issn.1000-0526.2012.7.015
[23] Chen Guangyu, Li Dongliang.Temporal-spatial characteristics of cumulative snow depth in Northeast China and its vicinity[J]. Meteorological Monthly, 2011, 37(5): 513-521.
doi: 10.7519/j.issn.1000-0526.2011.5.001
[23] [陈光宇, 李栋梁. 东北及邻近地区累计积雪深度的时空变化规律[J]. 气象, 2011, 37(5): 513-521.]
doi: 10.7519/j.issn.1000-0526.2011.5.001
[24] Wang Zhilan.Interannual Variations of Snow Cover over China and Possible Changes in Next 40 Years[D]. Lanzhou: Lanzhou University, 2011.
[24] [王芝兰. 中国地区积雪的年际变化特征及其未来年40年的可能变化[D]. 兰州:兰州大学, 2011.]
[25] Xiao Xiongxin, Zhang Tingjun.Passive microwave remote sensing of snow depth and snow water equivalent: Overview[J]. Advances in Earth Science, 2018, 33(6): 590-605.
[25] [肖雄新, 张廷军. 基于被动微波遥感的积雪深度和雪水当量反演研究进展[J]. 地球科学进展, 2018, 33(6): 590-605.]
[26] Zhao Xiaomeng, Li Dongliang, Chen Guangyu.GIS-based spatializing method for estimating snow cover depth in Northeast China and its nabes[J]. Arid Zone Research, 2012, 29(6): 927-933.
[26] [赵晓萌, 李栋梁, 陈光宇. 基于GIS的东北及邻近地区积雪深度空间化方法[J]. 干旱区研究, 2012, 29(6): 927-933.]
[27] Zhang Haijun.Study on Spatio-temporal Variations of Snow from 2000 to 2009 in Northeast China[D]. Jilin: Jilin University, 2010.
[27] [张海军. 2000—2009年东北地区积雪时空变化研究[D]. 吉林:吉林大学, 2010.]
[1] 潘留杰, 张宏芳. NEX-BCC模式对秦岭及周边地区气候变化的模拟及预估[J]. 地球科学进展, 2018, 33(9): 933-944.
[2] 李宁, 刘丽, 张正涛, 冯介玲, 陈曦, 白扣. 气候变化经济影响研究热点的足迹可视化:整合被引文献和突现词[J]. 地球科学进展, 2018, 33(8): 865-873.
[3] 刘鹄, 赵文智, 李中恺. 地下水依赖型生态系统生态水文研究进展[J]. 地球科学进展, 2018, 33(7): 741-750.
[4] 丁之勇, 鲁瑞洁, 刘畅, 段晨曦. 环青海湖地区气候变化特征及其季风环流因素[J]. 地球科学进展, 2018, 33(3): 281-293.
[5] 周洪建. 当前全球减轻灾害风险平台的前沿话题与展望——基于2017年全球减灾平台大会的综述与思考[J]. 地球科学进展, 2017, 32(7): 688-695.
[6] 李兴文, 张鹏, 强小科, 敖红. 三门峡会兴沟剖面黄土—古土壤序列的岩石磁学研究[J]. 地球科学进展, 2017, 32(5): 513-523.
[7] 何霄嘉, 王敏, 冯相昭. 生态系统服务纳入应对气候变化的可行性与途径探讨[J]. 地球科学进展, 2017, 32(5): 560-567.
[8] 韩增林, 尚颜颜, 郭建科, 王绍博. 东北地区港口内陆空间可达性综合测度[J]. 地球科学进展, 2017, 32(5): 502-512.
[9] 吴佳, 高学杰, 韩振宇, 徐影. 基于有效温度指数的云南舒适度变化分析[J]. 地球科学进展, 2017, 32(2): 174-186.
[10] 翦知湣, 党皓文. 解读过去、预告未来:IODP气候与海洋变化钻探研究进展与展望[J]. 地球科学进展, 2017, 32(12): 1267-1276.
[11] 方修琦, 张頔旸. 气候变化影响区域文明发展演化的主要表现方式[J]. 地球科学进展, 2017, 32(11): 1218-1225.
[12] 田彪, 丁明虎, 孙维君, 汤洁, 王叶堂, 张通, 效存德, 张东启. 大气CO研究进展[J]. 地球科学进展, 2017, 32(1): 34-43.
[13] 王聪强, 杨太保, 许艾文, 冀琴, MihretabG.Ghebrezgabher. 近25年唐古拉山西段冰川变化遥感监测[J]. 地球科学进展, 2017, 32(1): 101-109.
[14] 史培军, 王爱慧, 孙福宝, 李宁, 叶涛, 徐伟, 王静爱, 杨建平, 周洪建. 全球变化人口与经济系统风险形成机制及评估研究[J]. 地球科学进展, 2016, 31(8): 775-781.
[15] 焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.