地球科学进展 ›› 2017, Vol. 32 ›› Issue (1): 101 -109. doi: 10.11867/j.issn.1001-8166.2017.01.0101

全球变化研究 上一篇    

近25年唐古拉山西段冰川变化遥感监测
王聪强, 杨太保 *, 许艾文, 冀琴, MihretabG.Ghebrezgabher   
  1. 兰州大学资源环境学院, 甘肃 兰州 730000
  • 收稿日期:2016-08-10 修回日期:2016-11-20 出版日期:2017-01-10
  • 通讯作者: 杨太保(1962-),男,山西运城人,教授,主要从事自然地理环境变化的研究.E-mail:yangtb@lzu.edu.cn
  • 基金资助:
    *国家自然科学基金项目“黄河上游晚更新世河流阶地和冰川演化对千年尺度气候变化的响应”(编号:41271024); 兰州大学地理学基地科研训练及科研能力提高项目(编号:J1210065)资助.

Remote Sensing Monitoring of Glacier Changes in the Western Region of Tanggula Mountains in Recent 25 Years

Wang Congqiang, Yang Taibao *, Xu Aiwen, Ji Qin, Mihretab G. Ghebrezgabher   

  1. College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
  • Received:2016-08-10 Revised:2016-11-20 Online:2017-01-10 Published:2017-01-10
  • About author:Wang Congqiang(1989-), male, Pingdingshan City,He’nan Province, Master student. Research areas include global and environmental change. E-mail:15101229024@163.com*Corresponding author:Yang Taibao(1962-), male, Yuncheng City, Shanxi Province, Professor. Research areas include physical geography and environmental change. E-mail:yangtb@lzu.edu.cn
  • Supported by:
    Project supported by the National Natural Science Foundation of China “Yellow River Late Pleistocene river terraces and glacial evolution on millennial-scale climate change”(No.41271024); the Scientific Research Training and Scientific Research Ability Improvement Project of Geography Base of Lanzhou University (No.J1210065).
基于1990—2015年Landsat影像数据,利用比值阈值和NIR水体识别相结合的新方法提取并研究了近25年来唐古拉山西段冰川变化情况和规律,并采用克里金插值构建研究区气候分布及变化特征,揭示冰川变化与气候变化的关系。研究得出:唐古拉山西段冰川总体退缩比较严重,近25年来冰川面积退缩约202.84 km 2,占1990年面积的11.98%;冰川退缩主要集中在海拔5 800 m以下;研究区东南部冰川退缩最严重,中部格拉丹冬地区冰川退缩较少;空间插值表明研究区东南部相对较湿热而西北部干冷,西北—东南方向温度分布呈现由低到高的变化趋势,降水量先减少后增加总体变化幅度不大,但研究区气温普遍上升,插值变化显示增温区从研究区中心向周围辐射,最大增温区几乎已经覆盖整个冰川区域;唐古拉山西段冰川的加速退缩主要是由升温造成的。
This paper focuses on revealing the status quo and variation of glaciers in the western region of Tanggula Mountains. The ratio threshold, NIR water identification and visual interpretation were used to extract the boundary of glaciers based on Landsat data (TM/ETM+/OLI) from 1990 to 2015. In particular, the NIR water identification is a new method to extract glaciers from water, which is suitable to improve the traditional method of ratio threshold. This study used spatial interpolation method to evaluate temperature and precipitation changes. The kriging interpolation method was adapted to manipulate and to extract the appropriate data based on ten weather stations. Comparing to the variations and characteristics of glaciers and climate change from 1990 to 2015, we concluded that glacial retreat in the western region of Tanggula Mountains was serious. The glacier area reduced from 1 693.65 km 2 to 1 490.81 km 2, respectively, in 1990 and 2015, in general, approximately 202.84 km 2 (11.98%) of glacier area has been retreated in the last 25 years. Moreover, the rate of glacier decline after 2000 was much faster than the last decade of the 20th century. In addition, the decreased area of glaciers in the lower altitude basins below 5 000 meters occupied 94.84% of the total change area while the glacier above 5 000 meters almost had no change. The kriging interpolation of the meteorological data indicated that the southeast of the study area was damp and hot while the northwest was cold and dry. The characteristic of temperature distribution from the northwest to the southeast presented from low to high, and precipitation increased in the first of the study period and then decreased but both of them were not very significant. In short, the temperature of study area was increased more prominently since 2000, while the precipitation change was very weak. The mean annual temperature and precipitation of 1980-1989a, 1990-1999a, and 2000-2013a were -3.53 ℃, -3.20 ℃, -2.22 ℃, and 384.49 mm, 354.27 mm, 428.13 mm, respectively. The study found that the glacier change was consistent with temperature variation in spite of the adverse effects of increased precipitation. Therefore, the research concluded that the precipitation change was not more significant comparing to temperature change. In other words, the main reason of the rapid decrease of glaciers in study area was likely due to the rise of temperature.

中图分类号: 

[1] Li Kaiming,Li Zhongqin,Gao Wenyu, et al .Recent glacial retreat and its effect on water resources in Eastern Xinjiang[J]. Chinese Science Bulletin ,2011,56(32):2 708-2 716.
.科学通报,2011,56(32):2 708-2 716.]
[2] Qin Dahe.Climate change science and sustainable development[J]. Progress in Geography ,2014,33(7):874-883.
.地理科学进展,2014,33(7):874-883.]
[3] Duan Jianping,Wang Lili,Ren Jiawen, et al .Progress in glacier variations in China and its sensitivity to climatic change during the past century [J]. Progress in Geography ,2009,28(2):231-237.
.地理科学进展,2009,28(2):231-237.]
[4] Xin Huijuan,He Yuanqing,Zhang Tao, et al .The features of climate variation and glacier response in Mt.Yulong,Southeastern Tibetan Plateau[J]. Advances in Earth Science ,2013,28(11):1 257-1 268.
.地球科学进展,2013,28(11):1 257-1 268.]
[5] Wu Shanshan,Yao Zhijun,Jiang Liguang, et al .Method review of modern glacier volume change[J]. Advances in Earth Science ,2015,30(2):237-246.
.地球科学进展,2015,30(2): 237-246.]
[6] Wang Puyu,Li Zhongqin,Luo Shufei, et al .Five decades of changes in the glaciers on the Friendship Peak in the Altai Mountains, China: Changes in area and ice surface elevation[J]. Gold Regions Science and Technology ,2015,116:24-31.
[7] Zhang Liyun,Tang Ya,Yang Xin, et al .Overall and local changing patterns of main glaciers and their responses to climate change in Geladandong area of Yangtze Headwater region during 1969-2012[J]. Arid Land Geography ,2014,37(2):212-221.
.干旱区地理,2014,37(2):212-221.]
[8] Ding Yihui,Wang Shaowu,Zheng Jingyun, et al. Climate of China[M].Beijing:Science Press,2013:342-345.
.北京:科学出版社,2013:342-345.]
[9] Duan Wei,Duan Xu,Fan Feng, et al .Climatic characteristics of dry and wet season in the southeast side of the Tibetan Plateau and its causes [J]. Journal of Arid Meteorology ,2015,33(4):546-554.
.干旱气象,2015,33(4):546-554.]
[10] Li Shengchen,Li Dongliang,Zhao Ping, et al .The climatic characteristics of vapor transportation in rainy season of the origin area of three rivers in Qinhai-Xizang Plateau[J]. Acta Meteorologica Sinica ,2009,67(4):591-598.
.气象学报,2009,67(4):591-598.]
[11] Guo Wanqin. The First Glacier Inventory Dataset of China[Z].Lanzhou: Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences, 2012.
.兰州:中国科学院寒区旱区环境与工程研究所, 2012.]
[12] Guo Wanqin, Liu Shiyin, Yao Xiaojun, et al . Second Glacier Inventory Dataset of China (Version 1.0)[EB/OL]. Cold and Arid Regions Science Data Center at Lanzhou, 2014, doi: 10.3972/glacier.001.2013.db.
[13] Li Chengxiu,Yang Taibao,Tian Hongzhen, et al .Variation of west Kunlun Mountains glacier during 1990-2011[J]. Progress in Geography ,2013,32(4):548-559.
.地理科学进展,2013,32(4):548-559.]
[14] Wang Xiuna,Yang Taibao,Tian Hongzhen, et al .Response of glacier variation in the southern Altai Mountains to climate change during the last 40 years[J]. Arid Land Resources and Environment ,2013,27(2):77-82.
.干旱区资源与环境,2013,27(2):77-82.]
[15] Du Weibing,Li Junli,Bao Anming, et al .Information extraction method of alpine glaciers with multitemporal and multiangle remote sensing[J]. Acta Geodaetica et Cartographica Sinica ,2015,44(1):85-89.
.测绘学报,2015,44(1):85-89.]
[16] He Yi,Yang Taibao,Ji Qin, et al .Glacier shrinkage and its dependence on climate in the Central Asia Alatau Region [J]. Arid Land Geograghy ,2014,37(5):908-915.
. 干旱区地理, 2014, 37(5): 908-915.]
[17] Li Lin,Chen Xiaoguang,Wang Zhenyu, et al .Climate change and its regional differences over the Tibetan Plateau[J]. Advances in Climate Change Research ,2010,6(3):181-186.
.气候变化研究进展,2010,6(3):181-186.]
[18] Jiang Yongjian,Li Shijie,Shen Defu, et al .Climate change and its impact on the lake environment in the Tibetan Plateau in 1971-2008[J]. Scientia Geographica Sinica ,2012,32(12):1 503-1 512.
.地理科学,2012,32(12):1 503-1 512.]
[19] Qin Xiaojing,Sun Jian,Chen Tao, et al .Study on spatiotemporal variation of temperature and precipitation in Qinghai-Tibetan Plateau from 1974 to 2013 [J]. Journal of Chengdu University ,2015,34(2):191-195.
.成都大学学报,2015,34(2):191-195.]
[20] Huai Baojuan,Li Zhongqin,Sun Meiping, et al .RS analysis of glaciers change in the Heihe River Basin in the last 50 years [J]. Acta Geographica Sinica ,2014,69(3):365-367.
.地理学报,2014,69(3):365-367.]
[21] Xu Junli,Zhang Shiqiang,Shangguan Donghui, et al .Glacier change in headwaters of the Yangtze River in recent three decades[J]. Arid Zone Research ,2013,30(5):919-926.
.干旱区研究,2013,30(5):919-926.]
[22] Jin Shanshan,Zhang Yonghong,Wu Hongan.Study on glacial advancement and retreatment in Geladandong Region of Changjiangyuan in recent 40 years [J]. Journal of Natural Resources ,2013,28(12):2 095-2 104.
.自然资源学报,2013,28(12):2 095-2 104.]
[23] Ye Q,Kang S,Chen F, et al .Monitoring glacier variations on Geladandong mountain, central Tibetan Plateau, from 1969 to 2002 using remote-sensing and GIS technologies[J]. Journal of Glaciology ,2006,52(179):537-545.
[24] Zhang Jian,He Xiaobo,Ye Baisheng, et al .Recent variation of mass balance of the Xiao Dongkemadi Glacier in the Tanggula Range and its influencing factors[J]. Journal of Glaciology and Geocryology ,2013,35(2):263-271.
.冰川冻土,2013,35(2):263-271.]
[25] Qiao Chengjun.Remote sensing monitoring of glacier changes in Dongkemadi Region of Tanggula Mountain[J]. Journal of Anhui Agricultural Sciences ,2010,38(14):7 703-7 705.
.安徽农业科学,2010,38(14):7 703-7 705.]
[26] Wang Ninglian,Ding Liangfu.Study on the glacier variation in Bujiagangri Section of the east Tanggula Range since the Little Ice Age [J] . Journal of Glaciology and Geocryology ,2002,24(3):234-244.
.冰川冻土,2002,24(3):234-244.]
[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[3] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[4] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[5] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[6] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[7] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[8] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[9] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[10] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[11] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[12] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[13] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[14] 王亚锋,芦晓明,朱海峰,梁尔源. 高山树线的调查与研究方法[J]. 地球科学进展, 2020, 35(1): 38-51.
[15] 罗鑫玥,陈明星. 城镇化对气候变化影响的研究进展[J]. 地球科学进展, 2019, 34(9): 984-997.
阅读次数
全文


摘要