Please wait a minute...
img img
高级检索
地球科学进展  2014, Vol. 29 Issue (7): 786-794    DOI: 10.11867/j.issn.1001-8166.2014.07.0774
综述与评述     
非平稳风沙运动研究进展
王萍1, 2, 郑晓静1, 2
1. 兰州大学西部灾害与环境力学教育部重点实验室,甘肃 兰州,730000; 2. 兰州大学土木工程与力学学院力学系,甘肃 兰州,730000
Development of Unsteady Windblown Sand Transport
Wang Ping1, 2, Zheng Xiaojing1, 2
1. Key Laboratory of Mechanics on Disaster and Environment in Western China, MEC, Lanzhou University, Lanzhou 730000, China; 2. Department of Mechanics and Engineering Sciences, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730000, China
 全文: PDF(1158 KB)   HTML
摘要:

风蚀输沙起动条件与输沙率预测是风蚀预报、沙尘数值预报与风沙地貌演化以及防沙治沙工程研究所需的关键参数,因而一直是风沙物理学研究的重点课题。早期的研究主要关注稳态输沙过程,对野外实际输沙过程的预测存在相当大的误差。近年高频的实时同步输沙、风速测量显示:大气边界层近地表风速脉动强烈,因而导致野外实际输沙具有高度的时空变化。研究发现:风沙输运的非平稳特性与边界层湍流结构密切相关,因而会对沙粒起动条件判断、输沙率预测等产生影响。回顾了近20年中非平稳输沙研究在实验、理论以及数值模拟方面的进展,并提出了目前存在的问题和今后发展的趋势。

关键词: 湍流结构风速脉动输沙率时空变化    
Abstract:

The threshold condition and mass flux of aeolian sediment transport are the essential quantities for wind erosion prediction, dust storm modeling and geomorphological evolution, as well as the sand control engineering design. As a consequence, they have long been the key issues of windblown sand physics. Early researches on aeolian sediment transport focus mainly on steady transport process. While recently, synchronous, high frequency measurements show that wind field in atmospheric boundary layer is always unsteady, showing up as intense fluctuation of wind speed, which thus results in the intense spatial-temporal variability of aeolian sand transport. It has been proven that unsteady sand/dust transport is closely related with boundary layer turbulence and affects significantly the determination of threshold condition and the prediction of aeolian transport rate. The researches of experiment, theory analysis and numerical simulation on unsteady sand/dust transport in recent two decades are reviewed. Finally, open questions and future developments are suggested.

Key words: Spatiotemporal ariability of transport rate    Turbulence structure    Wind fluctuation.
出版日期: 2014-07-10
:  P931.3  
基金资助:

国家自然科学基金青年科学基金项目“野外非稳态跃移风沙运动及其输沙率的时空变化研究”(编号:11302090); 国家自然科学基金重点项目“风沙流/沙尘暴流场特性及其湍流结构的测量与分析”(编号:11232006)资助

作者简介: 王萍(1978-),女,辽宁沈阳人,讲师,主要从事风沙环境力学研究. E-mail:wping@lzu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王萍
郑晓静

引用本文:

王萍, 郑晓静. 非平稳风沙运动研究进展[J]. 地球科学进展, 2014, 29(7): 786-794.

Wang Ping, Zheng Xiaojing. Development of Unsteady Windblown Sand Transport. Advances in Earth Science, 2014, 29(7): 786-794.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2014.07.0774        http://www.adearth.ac.cn/CN/Y2014/V29/I7/786

[1] X J. Mechanics of Wind-blown Sand Movement[M]. German: Springer-Verlag, 2009.
[2] R A. The movement of desert sand[C]∥Proceedings of the Royal Society of London. Series A. London: Mathematical and Physical Sciences, 1936,157: 594-620.
[3] Hao, Zhang Hongsheng. Review of the threshold for dust emission during dust event[J]. Advances in Earth Science, 2011, 26(1):30-38.[朱好, 张宏升. 沙尘天气过程临界起沙因子的研究进展[J]. 地球科学进展,2011,26(1):30-38.]
[4] R A. The Physics of Blown Sand and Desert Dune[M]. London: Methuen, 1941.
[5] A W. Some Characteristics of Aeolian Sand Movement by Saltation Process[C]. Edition du Center National de la Recherche Scientifique. Paris: Quai Anatole,1953,7e:197-208.
[6] P R. Saltation of uniform grains in air[J]. Journal of Fluid Mechanics, 1964, 20(2): 225-242.
[7] S A. Wind stress criteria in eolian sand transport[J]. Journal of Geophysical Research, 1971, 76: 8 684-8 686.
[8] K, Lettau H H. Experimental and micrometerological field studies of dune migration[C]∥Lettau K, ed. Exploring the World’s Driest Cilmate. Wisconsim: University of Wisconsin Madison, 1978:110-147.
[9] B R. Soil transport by winds on Mars[J]. Journal of Geophysical Research, 1979, 4(B9): 4 643-4 651.
[10] J E, Haff P K. Steady-state saltation in air[J]. Sedimentology, 1987, 34(2): 289-299.
[11] G, Kroy K, Herrmann H J. A continuum saltation model for sand dunes[J]. Physics Review E, 2001, 64: 031305,doi:10.1103/PhysRevE.64.03B05.
[12] M. An analytic model of wind-blown sand transport[J]. Acta Mechanica, 1991, 1(Suppl.): 67-81.
[13] M. On the rate of aeolian sand transport[J]. Geomorphology, 2004, 59:53-62.
[14] J D, Rasmussen K R. The effect of wind speed and bed slope on sand transport[J]. Sedimentology, 1999, 46(4): 723-731.
[15] Y H, Guo X, Zheng X J. Experimental measurement of wind-sand flux and sand transport for naturally mixed sands[J]. Physics Review E, 2002, 66(2):021305,doi:10.1103/PhysRevE.66.021305.
[16] M P, Parteli E J R, Andrade Jr J S, et al. Giant saltation on Mars[J]. PNAS, 2008, 105(17): 6 222-6 226.
[17] B O. Contemporary research in aeolian geomorphology[J]. Geomorphology, 2009, 105:1-5.
[18] D J, Bauer B O, Gares B O, et al. Wind-blown sand at Castroville, California[C]∥Proceedings, 25th International Conference on Coastal Engineering. Orlando, FL:American Society of Civil Engineers, 1996: 4 214-4 226.
[19] X J, Zhang J H. Characteristics of near-surface turbulence during a dust storm passing Minqin on March 19, 2010[J]. Chinese Science Bulletin, 2010, 55(27/28): 3 107-3 112.
[20] G R. Grain transport rates in steady and unsteady turbulent airflows[J]. Acta Mechanica, 1991, 1(Suppl.): 97-122.
[21] J E, Zobeck T M. Intermittent saltation[J]. Sedimentology, 1997, 44: 959-972.
[22] A C W. Complex systems in aeolian geomorphology[J]. Geomorphology, 2007, 91: 311-331.
[23] Ping, Zheng Xiaojing. Fluctuating of wind-blown sand flux in field wind condition[J]. Journal of Desert Research, 2013,11(6):1 622-1 628.[王萍,郑晓静. 野外近地表风沙流脉动特征分析[J].中国沙漠,2013,11(6):1 622-1 628.]
[24] R S, Haff P K. Simulation of eolian saltation[J]. Science, 1988, 241: 820-823.
[25] R S, Haff P K. Wind modification and bed response during saltation of sand in air[J]. Acta Mechanica, 1991, 1(Suppl.): 21-25.
[26] I K, Willetts B B. Numerical model of the saltation cloud[J]. Acta Mechanica, 1991, 1(Suppl.): 53-66.
[27] X J, Huang N, Zhou Y H. Laboratory measurement of electrification of wind-blown sands and simulation of its effect on and saltation movement[J]. Journal of Geophisical Research, 2003, 108: D104322.
[28] X J, Huang N, Zhou Y H. The effect of electrostatic force on the evolution of sand saltation cloud[J]. The European Physical Journal E, 2006, 19: 129-138.
[29] G W, Zheng X J. Electric field in windblown sand flux with thermal diffusion[J]. Journal of Geophysical Research: Atmospheres, 2006,111: D16106,doi:10.1029/2005JD006972.
[30] T L, Zhang H, Zhu W, et al. Theoretical prediction of electric fields in wind-blown sand[J]. Journal of Geophysical Research: Atmospheres, 2013, 118: 4 494-4 502.
[31] J F, Renno N O. A comprehensive numerical model of steady state saltation (COMSALT)[J]. Journal of Geophysical Research: Atmospheres,2009, 114: D17204.
[32] Y P, Li A. Numerical modeling of saltation in the atmospheric surface layer[J]. Boundary Layer Meteorology, 1999, 91:199-225.
[33] G S, Zheng X J. The fluctuation property of blown sand particles and the wind-sand flow evolution studied by numerical method[J]. The European Physical Journal E, 2011, 34(5): 54.
[34] Y P, Raupach M R. The overshoot and equilibration of saltation[J]. Journal of Geophysical Research, 1992, 97:20 559-20 564.
[35] B T. A steady-state model of wind-blown sand transport[J]. Journal of Geology, 1990, 98:1-17.
[36] I K, Willetts B B. Adaptation of the near-surface wind to the development of sand transport[J]. Journal of Fluid Mechanics, 1993, 252: 99-115.
[37] G R. Sand transport response to fluctuating wind velocity[C]∥Clifford N J, Trench J R, Hardisty J, eds. Turbulent: Perspectives on Flow and Sediment Transport. New York: John Wiley & Sons, 1993: 305-335.
[38] D W T. Potential inertial effects in aeolian sand transport: Preliminary results[J]. Sedimentary Geology, 1996,106: 193-201.
[39] G R. Transitional behaviour of saltation: Wind tunnel observations of unsteady winds[J]. Journal of Arid Environments, 1998, 39: 377-394.
[40] P J, McEwan I K, Butterfield G R. One-dimensional transition behaviour in saltation[J]. Earth Surface Processes and Landforms, 2000, 25: 505-518.
[41] S. Estimating the longitudinal wind spectrum near the ground[J]. Quarterly Journal of the Royal Meteorological Society, 1965, 91: 302-317.
[42] J C, Wyngaard J C, Izumi Y, et al. Spectral characteristics of surface-layer turbulence[J]. Quarterly Journal of the Royal Meteorological Society, 1972, 98: 563-589.
[43] J C. Atmospheric turbulence[J]. Annual Review of Fluid Mechanics, 1992, 24: 205-234.
[44] S K. Coherent motions in the turbulent boundary layer[J]. Annual Review of Fluid Mechanics, 1991, 23:601-639.
[45] I, McKeon B J, Monkewitz P A, et al. Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues[J]. Physics of Fluids, 2010, 22: 065103,doi:1063/1.3453711.
[46] A, McKeon B, Marusic I. High reynolds number wall turbulence[J]. Annual Review of Fluid Mechanics, 2011, 43:353-375.
[47] Krmn T. Some aspects of the turbulence problem[C]∥Proceeding of 4th International Congress on Applied Mechanics. Cambridge, 1935: 54-91.
[48] F J. Recent developments in the dynamics of wind erosion[J]. Transactions American Geophysical Union, 1941, 22: 262-284.
[49] D A, Stockton P H. Mass, momentum and kinetic energy fluxes of saltating particles[C]∥Nickling W G, ed. Aeolian Geomorphology. Boston: Allen and Unwin, 1986: 35-56.
[50] W P, van den Abeele G D. Wind borne particle measurements with acoustic sensors[J]. Soil Technology, 1991, 4:51-63.
[51] D W T. A new, instantaneous aeolian sand trap design for field use[J]. Sedimentology, 1996, 43: 791-796.
[52] B O, Namikas S L. Design and field test of a continuously-weighing, tipping bucket assembly for aeolian sand traps[J]. Earth Surface Processes and Landforms, 1998, 23(13): 1 171-1 183.
[53] S L. Field evaluation of two traps for high-resolution aeolian transport measurements[J]. Journal of Coastal Research, 2002, 18(1): 136-148.
[54] A C W. Evaluation of saltation flux impact responders (Safires) for measuring instantaneous aeolian sand transport intensity[J]. Geomorphology, 2004, 59: 99-118.
[55] J T, Morrison R F, Priest B H. Detecting impacts of sand grains with a microphone system in field conditions[J]. Geomorphology, 2009,105: 87-94.
[56] C H, Barchyn T E. Laboratory and field performance of a laser particle counter for measuring aeolian sand transport[J]. Journal of Geophysical Research, 2011, 116: F01010,doi:10.1029/2010JF001822.
[57] B O, Davidson-arnott R G D, Ordstrom N K F, et al. Indeterminacy in aeolian sediment transport across beaches[J]. Journal of Coastal Research, 1996, 12(3):641-653.
[58] A C W, Sherman J S. Spatiotemporal variability of aeolian sand transport in a coastal dune environment[J]. Journal of Coastal Research, 2006, 22(5):1 198-1 205.
[59] J T, Sherman D J, Farrell E J, et al. Temporal and spatial variability of aeolian sand transport: Implications for field measurements[J]. Aeolian Research, 2012, 3(4): 379-387.
[60] B O, Yi J, Namikas S L, et al. Event detection and conditional averaging in unsteady aeolian systems[J]. Journal of Arid Environments, 1998, 39: 345-375.
[61] G, Jacobs A F G, Van Boxel J H. The effect of turbulent flow structures on saltation[J]. Earth Surface Processes and Landforms, 1998, 23: 877-887.
[62] H J, von Lwis S. Turbulence-driven saltation in the atmospheric surface layer[J]. Meteorologische Zeitschrift, 2003, 12: 257-268.
[63] J K, van Boxel J H, Sterk G. Wind forces and related saltation transport[J]. Geomorphology, 2005, 71: 357-372.
[64] A C W. The Formation and Behavior of Aeolian Streamers[D]. Los Angeles: University of Southern California, 2003.
[65] A C W. Wavelet power spectra of aeolian sand transport by boundary layer turbulence[J]. Geophysical Research Letters, 2006, 33(5): L05403,doi:1029/2005GL025547.
[66] A C W. Complex systems in aeolian geomorphology[J]. Geomorphology, 2007, 91:311-331.
[67] A C W, Sherman D J. Formation and behavior of aeolian streamers[J]. Journal of Geophysical Research, 2005, 110: F03011,doi:10.1029/2004JF000270.
[68] J C R, Carlotti P. Statistical structure at the wall of the high Reynolds number turbulent boundary layer[J]. Flow, Turbulence and Combustion, 2001, 66: 453-475.
[69] Y. Physics and Modeling of Wind Erosion[M]. Boston: Kluwer Academic Publishers, 2000.
[70] H A, ElSamni E S A. Hydrodynamic forces on a rough wall[J]. Review of Modern Physics, 1949, 21(3): 520-527, doi:10.1103/RevModPhys. 21.520.
[71] A M, Nieuwstadt F T M. Measurement of the lift force on a particle fixed to the wall in the viscous sublayer of a fully developed turbulent boundary layer[J]. Journal of Fluid Mechanics, 1996, 316: 285-306.
[72] J W, Yates B. Mechanism of detachment of colloidal particles from a flat substrate in a turbulent flow[J]. Journal of Colloid and Interface Science, 1973, 44(3): 464-474.
[73] I, Harion J L, Baudoin B. Taking-off model of particles with a wide size distribution[C]∥Chemical Engineering and Processing: Process Intensification, 2005, 44(2): 159-166.
[74] M, Diplas P, Dancey C L, et al. Role of instantaneous force magnitude and duration on particle entrainment[J]. Journal of Geophysical Research, 2010, 115(F2): F02006,doi:10.1029/2008JF001247.
[75] Xueling, Zeng Qingcun, Hu Fei, et al. Gustness and coherent structure of strong wind in the atmospheric boundary layer[J]. Climatic and Environmental Research, 2007, 12(3): 227-243.[程雪玲, 曾庆存, 胡非,等. 大气边界层强风的阵性和相干结构[J]. 气候与环境研究, 2007, 12(3): 227-243.]
[76] X L, Zeng Q C, Hu F. Characteristics of gusty wind disturbances and turbulent fluctuations in windy atmospheric boundary layer behind cold fronts[J]. Journal of Geophysical Research, 2011, 116: D06101,doi:10.1029/2010JD015081.
[77] Q, Cheng X, Hu F, et al. Gustiness and coherent structure of strong winds and their role in dust emission and entrainment[J]. Advances in Atmospheric Sciences, 2010, 27(1): 1-13.
[78] Qingcun, Cheng Xueling, Hu Fei. The mechanism of soil erosion and dust emission under the action of nonsteady strong wind with fescending motion and gusty wind[J]. Climatic and Environmental Research, 2007, 12(3): 244-250.[曾庆存, 程雪玲, 胡非. 大气边界层非常定下沉急流和阵风的起沙机理[J]. 气候与环境研究, 2007, 12(3): 244-250.]
[79] X J, Zhang J H, Wang G H, et al. Investigation on Very Large Scale Motions (VLSMs) and their influence in a dust storm[J]. Science in China (Series G), 2013, 56(2): 306-314.
[80] Liang, Zhang Jinghong. Analysis of temperature fluctuations during a dust storm[J]. Journal of Desert Research, 2011, 31(3):649-654.[谢亮, 张静红. 沙尘暴期间的温度脉动特征分析[J].中国沙漠, 2011, 31(3):649-654.]
[81] T L, Zheng X J. A field observational study of electrification within a dust storm in Minqin, China[J]. Aeolian Research, 2013, 8: 39-47.
[82] G F S, Atherton R J, Baird A J. Thresholds of aeolian sand transport: Establishing suitable values[J]. Sedimentology, 2004, 51: 95-108.
[83] K, Kuriyama Y, Jackson D W T. Observations of wind-blown sand under various meteorological conditions at a beach[J]. Journal of Geophysical Research, 2008, 113: F04008,doi:10.1029/2007JF000936.
[84] B O, Davidson-Arnott R G D. A general framework for modeling sediment supply to coastal dunes including wind angle, beach geometry, and fetch effects[J]. Geomorphology, 2003, 49(1/2): 89-108.
[85] B O, Davidson-Arnott R G D, Hesp P A, et al. Aeolian sediment transport on a beach: Surface moisture, wind fetch, and mean transport[J]. Geomorphology, 2009, 105(1): 106-116.
[86] B O, Davidson-Arnott R G D, Walker I J, et al. Wind direction and complex sediment transport response across a beach-dune system[J]. Earth Surface Processes and Landforms, 2012, 37(15): 1 661-1 677.
[87] Neuman C, Lancaster N, Nickling W G. Effect of unsteady winds on sediment transport intermittency along the stoss slope of a reversing dune[J]. Sedimentology, 2000, 47: 211-226.
[88] I J, Davidson-Arnott R G D, Hesp P A, et al. Mean flow and turbulence responses in airflow over foredunes: New insights from recent research[J]. Journal of Coastal Research, 2009, 56: 366-370.
[89] R G D, Bauer B O, Walker I J, et al. High-frequency sediment transport responses on a vegetated foredune[J]. Earth Surface Processes and Landforms, 2012, 37(11): 1 227-1 241.
[90] B O, Davidson-arnott R G D, Ordstrom N K F, et al. Indeterminacy in aeolian sediment transport across beaches[J]. Journal of Coastal Research, 1996, 12(3):641-653.
[91] B O, Davidson-Arnott R G D, Walker I J, et al. Wind direction and complex sediment transport response across a beach-dune system[J]. Earth Surface Processes and Landforms, 2012, 37(15): 1 661-1 677.
[92] R L, Barchyn T E, Hugenholtz C H, et al. Timescale dependence of aeolian sand flux observations under atmospheric turbulence[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(16): 9 078-9 092.
[93] Z, Zobeck T M, Stout J E, et al. The effect of wind averaging time on wind erosivity estimation[J]. Earth Surface Processes and Landforms, 2012, 37(7): 797-802.
[94] K R, Srensen M. Aeolian mass transport near the saltation threshold[J]. Earth Surface Processes and Landforms, 1999, 24: 413-422.
[95] D J, Reitz M D, Martin R L. Sorting out abrasion in a gypsum dune field[J]. Journal of Geophysical Research: Earth Surface, 2011, 116,doi:10.1029/2010JF001821.
[96] M. On the effect of time variability of the wind on rates of aeolian sand transport[J]. Aarhus Geoscience, 1997, 7: 73-77.[JP]
[97] D W T, McCloskey J. Preliminary results from a field investigation of aeolian sand transport using high resolution wind and transport measurements[J]. Geophysical Research Letters, 1997, 24(2):163-166.
[98] R G D, McQuarrie K, Aagaard T. The effects of wind gusts on aeolian sediment transport on a beach[J]. Geomorphology, 2005, 68:115-129.
[99] R G D, Bauer B O, Walker I J, et al. Instantaneous and mean aeolian sediment transport rate on beaches: An intercomparison of measurements from two sensor type[J]. Journal of Coastal Research, 2009, 56:297-301.
[100] G R. Application of thermal anemometry and high frequency measurement of mass flux to aeolian sediment transport research[J]. Geomorphology, 1999, 29: 31-58.
[101] Xiaoqing, Wang Ping. Numerical simulation of unsteady sand saltation under sinusoidal wind variations[J]. Journal of Desert Research, 2011,31(3):588-592.[彭晓庆,王萍. 正弦风速下的非平稳跃移风沙运动模拟[J].中国沙漠, 2011,31(3):588-592.]
[102] P, Zheng X J. Saltation transport rate in unsteady wind variations[J]. The European Physical Journal E, 2014,37: 40.
[103] J F. Difference in the wind speeds required for initiation versus continuation of sand transport on Mars: Implications for dunes and dust storms[J]. Physical Review Letters, 2010, 104(7): 074502,doi:10.1103/Phys Rer Lett.104.074502.
[104] Y P. A similarity theory for saltation and application to aeolian mass flux[J]. Boundary-Layer Meteorology, 2005, 115: 319-338.
[105] R S. Eolian sediment transport as a stochastic process: The effects of a fluctuating[J]. Journal of Geology, 1987, 95: 497-512.
[106] P, Zheng X J, Hu W W. Saltation and suspension of wind-blown particle movement[J]. Science in China (Series G), 2008, 51(10): 1 586-1 596.
[107] Ning, Gu Yandan. Review of the mechanism of dust emission and deposition[J]. Advances in Earth Science, 2009, 24(11):1 175-1 184.[黄宁, 辜艳丹. 粉尘释放和沉积机制的研究进展[J]. 地球科学进展,2009,24(11):1 175-1 184.][JP]
[108] X L, Zeng Q C, Hu F. Stochastic modeling the effect of wind gust on dust entrainment during sand storm[J]. Chinese Science Bulletin, 2012, 57(27): 3 595-3 602.
[109] R S, Srensen M, Willetts B B. A review of recent progress in our understanding of aeolian sediment transport[J]. Acta Mechanica, 1991, 1(Suppl.):1-19.
[110] Bin, Wang Yuan, Liu Jiang, et al. High-frequency measurement of the sand phase’s concentration in wind-sand flow[J]. Journal of Experiments in Fluid Mechanics, 2010,24(5): 47-50.[杨斌, 王元, 刘江, 等. 风沙流中沙粒相浓度的高频测量[J]. 实验流体力学, 2010,24(5): 47-50.]
[111] P, Gillette D A. Field measurements of the sheltering effect of vegetation on erodible land surfaces[J]. Land Degradation & Rehabilitation, 1990, 2: 77-85.
[112] Pelt R S, Peters P, Visser S. Laboratory wind tunnel testing of three commonly used saltation impact sensors[J]. Aeolian Research, 2009, 1: 55-62.
[113] T E, Hugenholtz C H. Field comparison of four piezoelectric sensors for detecting aeolian sediment transport[J]. Geomorphology, 2010,120(3/4): 368-371.
[114] C H, Barchyn T E. Laboratory and field performance of a laser particle counter for measuring aeolian sand transport[J]. Journal of Geophysical Research, 2011,116, doi:10.1029/2010JF001822.
[115] Bin, Wang Yuan, Wang Dawei. Development of wind-sand flow measurement techniques[J]. Advances in Mechanics, 2006,36(4): 580-590.[杨斌, 王元, 王大伟. 风沙两相流测量技术研究进展[J].力学进展, 2006,36(4): 580-590.]
[116] S, Bergametti G, Marticorena B, et al. Modeling saltation intermittency[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(13): 7 109-7 128.
[117] D J, Lyons W. Beach-state controls on aeolian sand delivery to coastal dunes[J]. Physical Geography, 1994, 15(4): 381-395.
[1] 杨林, 董玉祥, 杜建会. 海岸沙丘对风暴响应研究进展[J]. 地球科学进展, 2017, 32(7): 716-722.
[2] 樊瑞静, 李生宇, 周杰, 王海峰. 不同外形粗糙元覆盖沙床面抗风蚀效益的风洞模拟实验[J]. 地球科学进展, 2017, 32(1): 83-89.
[3] 张克存, 安志山, 蔡迪文, 郭紫晨, 王军战. 沙漠—绿洲过渡带近地表风沙过程研究进展[J]. 地球科学进展, 2015, 30(9): 1018-1027.
[4] 张克存, 安志山, 屈建军, 庞营军. 基于三维激光扫描仪的青藏铁路风沙工程效益评价[J]. 地球科学进展, 2014, 29(10): 1197-1203.
[5] 张正偲, 董治宝. 风沙地貌形态动力学研究进展[J]. 地球科学进展, 2014, 29(6): 734-747.
[6] 戴海伦, 金复鑫, 张科利. 国内外风蚀监测方法回顾与评述[J]. 地球科学进展, 2011, 26(4): 401-408.
[7] 胡光印,董治宝,魏振海,逯军峰,颜长珍. 近30a来若尔盖盆地沙漠化时空演变过程及成因分析[J]. 地球科学进展, 2009, 24(8): 908-916.
[8] 钟德才. 中国现代沙漠动态变化及其发展趋势[J]. 地球科学进展, 1999, 14(3): 229-234.