地球科学进展 ›› 2001, Vol. 16 ›› Issue (1): 45 -54. doi: 10.11867/j.issn.1001-8166.2001.01.0045

综述与评述 上一篇    下一篇

基于冠层温度的作物缺水研究进展
袁国富,唐登银,罗毅,于强   
  1. 中国科学院地理科学与资源研究所,北京,100101
  • 收稿日期:1999-11-22 修回日期:2000-06-01 出版日期:2001-02-01
  • 通讯作者: 袁国富(1971-),男,湖北洪湖市人,博士生,主要从事农田生态和农业气象研究. E-mail:yuangf@dls.iog.ac.cn
  • 基金资助:

    国家自然科学基金重大项目"我国北方地区农业生态系统水分运行及其区域分异规律研究"(编号:19890330)资助.

ADVANCES IN CANOPY-TEM PERATURE-BASED CROP WATER STRESS RESEARCH

YUAN Guofu,TANG Dengyin,LUO Yi,YU Qiang   

  1. Institute of Geographical Science and Natural Resources,CAS,Beijing 100101 China
  • Received:1999-11-22 Revised:2000-06-01 Online:2001-02-01 Published:2001-02-01

冠层温度信息可以很好地反映作物的水分状况。自20世纪70年代以来,基于冠层温度的作物缺水指标的研究经历了三个阶段,即单纯研究冠层温度本身变化特征的第一阶段、以冠层能量平衡原理为基础的作物水分胁迫指数的第二阶段和考虑冠层和土壤的复合温度的水分亏缺指数的第三阶段。指标的发展也由使用手持式红外辐射仪信息扩大到使用航空和卫星遥感信息。这一类指标在点和区域尺度上均可应用。加强这一类指标的研究对于我国北方地区农作物的有效灌溉和区域水资源的管理都有重要意义.

Canopy temperature is a good indicator of crop wafer status.  This paper reviews the advances in the index far crop water stress statue based on canopy temperature and its applications.The development of the indices can be divided into three stages, In the first stage,only canopy temperature under different water status was taken into considered. In the second stage,Crap Water Stress Index, which was based on canopy energy balance and used the hand-hold infrared thermometry,was represented.  In the third stage,the Mater Deficit Index was represented,which is based on canopy-soil composite temperature,and can use the information from the hand-hold,airborne and satellite-based infrared sensor,  These indices can be used for irrigation scheduling, predicting crap yields and drought monitoring in the regions,etc. There remain be some problems in these indices and its application,which is addressed in this paper.

中图分类号: 

[1] Gardner B R.Nielsen D C, Shockc C.Infrared thermometry and the crop water stress index Ⅰ.History, theory, and baselines[J]. Journal of Production Agriculture, 1992, 5: 462-468.
[2] Jackson R D. Canopy temperature and crop water stress[A]. In: Hillel D, ed. Advances in Irrigation, Vol.I[C]. New York: Academic Press, 1982. 43~85.
[3] Aston A R, Van Bavel C H M. Soil surface water depletion and leaf temperature[J].Agronomy Journa1, 1972, 64: 21~27.
[4] Idso S B, Jackson R D, Reginato R J. Remote sensing of crop yields[J].Science, 1977, 196: 19~25.
[5] Jackson R D, Reginato R J, Idso S B. Wheat canopy temperature: A practical tool for evaluating water requirements[J]. Water Resource Research, 1977, 13: 651~656.
[6] Clawson K L, Blad BL. Infrared thermometry for scheduling irrigation of corn[J]. Agronomy Journa1,1982, 74, 311~316.
[7] Gardner B R, Blad B L, Garrity D P, et al. Relationships between crop temperature, grain yield, vapor transpiration and phonological development in two hybrids of moisture stressed sorghum [J]. Irrigation Science, 1981,2:213~224.
[8] Gardner B R, Blad B L, Watts D G .Plant and air temperature in differentially irrigated corn[J].Agricultural Meteorology, 1981, 25: 207~217.
[9] Clawson K L, Jackson R D, Pinter P J Jr.Evaluating plant water stress with canopy temperature differences [J].Agronomy Jouranl, 1989, 81: 858~863.
[10] Idso S B, Jackson R D, Pinter P J Jr, et al. Normalizing the stress degree day for environmental variability[J]. Agricultural Meteorology, 1981, 24: 45~55.
[11] Jackson R D, Idso S B, Reginato R J.Canopy temperature as a crop water stress indicator[J].Water Resource Research, 1981, 17 :1133~1138.
[12] Jackson R D, Kustas W P, Choudhury B J. A reexamination of the crop waters stress index[J]. Irrigation Science, 1988, 9: 309~317.
[13] O’Toole J C, Hatfield J L. Effect of wind on the crop water stress index derived by infrared thermometry[J]. Agronomy Journa1, 1983, 75: 811~817.
[14] Jalali-Farahani H R, Slack D C, Kopec D M, et al. Crop water stress index models for Bermuda grass Turf: A comparison[J].Agronomy Journal, 1999, 85: 1210~1217.
[15] Idso S B, Clawson K L, Anderson M G. Foliage temperature effects of environmental factors with implications for plant water stress assessment and CO2 effects climate[J].Water Resource Research, 1986, 22:1702~l 716.
[16] Zhang R. A model for estimating crop mess based on infrared radiation information[J].Science in China B, 1986, 7: 776~784.[张仁华.以红外辐射信息为基础的估算作物缺水状况的新模式[J]. 中国科学(B辑), 1986,7:776~784.
[17] Zhang R.Experimental remote sensing model and its land surface process[M].Beijing: Science Press, 1996: 186~192. [张仁华.实验遥感模型及地面基础[M]. 北京: 科学出版社, 1996.186~192.]
[18] Wanjura D F, Kelly C A, Wendt C W, et al.Canopy temperature and water stress of cotton crops with complete and partial ground cover[J]. Irrigation Science, 1984, 5: 37~46.
[19] Hatfield J L, Wanjura D F, Barker G L. Canopy temperature response to water stress under partial canopy[J]. Transactions of the ASAE, 1985, 28: 1 607~1 611.
[20] Moran M S, Clarke T R, Inoue Y, et al.Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index[J].Remote Sensing of Environment, 1994, 49:246~263.
[21] Pinter P J Jr, Reginato R J.A thermal infrared technique for monitoring cotton water stress and scheduling irrigation[J]. Transactions of the ASAE, 1982, 25:1 651~1 655.
[22] Oliva R N, Steiner J J, Young W C. Red clover seed production, Ⅰ: Crop water requirements and irrigation timing[J].Crop Science, l994, 34: 178~184.
[23] Sudhakara R, Subramanian S, Palaniappan S P. Infrared thermometry-a new technique for scheduling irrigation[J].Madras Agricultural Journal, 1990, 77: 249~258.
[24] Nielsen D C.Scheduling irrigation for soybeans with the Crop Water Stress Index(CWSD)[J].Field Crops Research, 1990, 23: 103~116.
[25] Howell T A, Hatfoeld J L, Yamada H,  et al.Evaluation of cotton canopy temperature to detect crop water stress [J]. Transactions of The ASAE, 1984, 27: 84~88.
[26] Reginato R J.Field quantification of crop water stress[J].Transactions of the ASAE, 1983, 26: 772~775, 781.
[27] Regioato R J, Howe J.Irrigation scheduling using crop indicators[J].Journal of Irrigation and Drainage Engineering, 1985,111: 125~133.
[28] Garrot D J, Fangmeier D D, Husman S H, et al. Irrigation scheduling using the crop waters stress index in Arizona[A]. In: Visions of the future-Proceedings of the 3rd National Irrigation Symposium[C].ASAE Pub April, St Josephs, MI, 1990. 281~286.
[29] Soberer T F, Slack D C, Clark L, et al.Comparison of three irrigation scheduling method in the arid southwestern U. S[A].In: Visions of the Future-Proceedings of the 3rd National Irrigation Symposium[C].St Josephs, MI: ASAE Pub, l990. 287~291.
[30] Steele D D, Gregor B L, Shoe J B.Irrigation scheduling methods for popcorn in the northern Great Plains[J].Transactions of the ASAE, 1997, 40: 149~155.
[31] Stockle C O, Hiller L K.Evaluation of on-farm irrigation scheduling methods for potatoes[J].American Potato Journal, 1994,71: 155~164.
[32] Gardner B R, Nielsen D C, Shock C C. Infrared thermometry and the crop water stress index, Ⅱ: Sampling procedures and interpretation[J]. Journal of Production Agriculture, 1992, 5: 466~ 475.
[33] Brown K W, Rosenberg N J.A resistance model to predict evapotranspiration and its application to a sugar beet field[J].Agronomy Journal, 1973, 65: 635~641.
[34] Stockle C O, Evans R G. Accuracy of canopy temperature energy balance for determining daily evapotranspiration[J].Irrigation Science, 1996, 16: 149~157.
[35] Vldal A, Devaux-Ros C. Evaluating forest fire hazard with a land sat TM derived water stress index[J]. Agricultural and Forest Meteorology, 1995, 77: 207~224.
[36] Clarke T R.An empirical approach for detecting crop water stress using multispectral airborne sensor[J]. Hort Technology, 1 997, 7: 1, 9~16.
[37] Moran M S, Maas S J, Pinter P J Jr.Combing remote sensing and modeling for estimating surface evaporation and biomass production[J].Remote Sensing Reviews, 1995, 12: 335~353.
[38] Moran M S, Maas S J, Clarke T R, et al. Modeling/Remote sensing and approach for irrigation scheduling [A]. In: Camp C R, Sadler E J, Yoder R E, eds. Evapotranspiration and Irrigation Scheduling, Proceeding of the International Conference[C]. Nov 3~6, San Antonio, Texas, 1996. 231~238.
[39] Tang D.A drought index based on energy balance[J]. Geographic Research, 1986, 6: 2, 21~31.[唐登银.一种以能量平衡为基础的干旱指数[J]. 地理研究, 1986, 6(2): 21~31.]
[40] Yu H, Deng G, Lu Z, et al. The judgment of physiological and ecological effect sand dry degree of winter wheat under deferent soil water condition.In: The study of Relationship Between Crop and Water[M]. Beijing: China Science and Technology Press, 1992.66~73.[于沪宁, 邓根云, 卢振民, 等.不同土壤水分条件下冬小麦的生理生态效应及干旱程度判断[A]. 见: 中国科学院台站网络农作物耗水量研究课题组.作物与水分关系研究[C].北京: 中国科学技术出版杜, 1992. 66~73.
[41] Kang S, Xiong Y. Study on the judgment method for crop water stress and irrigation index[J].Journal Hydraulic Engineering, l991, 1:34~39.[康绍忠, 熊运章.作物缺水状况的判别方法与灌水指标的研究 [J].水利学报, 1991, 1:34~39.]
[42] Tian G, Zheng K, Li F, et al.Estimation of evapotranspiration and soil moisture using NOAA-AVHRR image and ground based meteorological data. In: Remote Sensing Research on Typical Areas of Huanghe River Watershed[M].Beijing: Science Press, l 990.16l~175.[田国良, 郑柯, 李付琴, 等.用NOAA—AVHRR数字图像和地面气象站资料估算麦田的蒸散和土壤水分[A].黄河流域典型地区遥感动态研究[C]. 北京: 科学出版社, 1990.161~175.]
[43] Sheng G, Tian G. Drought monitoring with crop water stress index[J]. Agricultural Research in the Arid Areas,1998, 16:1, 123~128.[申广荣, 田国良.作物缺水指数监测旱情方法研究[J].干旱地区农业研究, 1998, 16: 123~128.]
[44] Wu X, Yan S, Tian G, et al.Using NOAA, AVHRR data to monitor drought with GIS technique[J]. Journal of Remote Sensing, 1998, 2: 4, 280~284. [武晓波, 阎守邕, 田国良, 等.在GIS支持下用NOAA/AVHRR数据进行旱情监测[J]. 遥感学报, 1998, 2: 4, 280~284.]

[1] 王忠静,石羽佳,张腾. TRMM遥感降水低估还是高估中国大陆地区的降水?[J]. 地球科学进展, 2021, 36(6): 604-615.
[2] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[3] 吴佳梅,彭秋志,黄义忠,黄亮. 中国植被覆盖变化研究遥感数据源及研究区域时空热度分析[J]. 地球科学进展, 2020, 35(9): 978-989.
[4] 董治宝,吕萍,李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[5] 刘元波, 吴桂平, 赵晓松, 范兴旺, 潘鑫, 甘国靖, 刘永伟, 郭瑞芳, 周晗, 王颖, 王若男, 崔逸凡. 流域水文遥感的科学问题与挑战[J]. 地球科学进展, 2020, 35(5): 488-496.
[6] 刘磊,翁陈思,李书磊,胡帅,叶进,窦芳丽,商建. 太赫兹波被动遥感冰云研究现状及进展[J]. 地球科学进展, 2020, 35(12): 1211-1221.
[7] 李浩杰,李弘毅,王建,郝晓华. 河冰遥感监测研究进展[J]. 地球科学进展, 2020, 35(10): 1041-1051.
[8] WangJingfeng,刘元波,张珂. 最大熵增地表蒸散模型:原理及应用综述[J]. 地球科学进展, 2019, 34(6): 596-605.
[9] 陈泽青,刘诚,胡启后,洪茜茜,刘浩然,邢成志,苏文静. 大气成分的遥感监测方法与应用[J]. 地球科学进展, 2019, 34(3): 255-264.
[10] 冉有华,李新. 中国多年冻土制图:进展、挑战与机遇[J]. 地球科学进展, 2019, 34(10): 1015-1027.
[11] 肖雄新, 张廷军. 基于被动微波遥感的积雪深度和雪水当量反演研究进展[J]. 地球科学进展, 2018, 33(6): 590-605.
[12] 栾海军, 田庆久, 章欣欣, 聂芹, 朱晓玲. 定量遥感地表参数尺度转换研究趋势探讨[J]. 地球科学进展, 2018, 33(5): 483-492.
[13] 宋晓谕, 高峻, 李新, 李巍岳, 张中浩, 王亮绪, 付晶, 黄春林, 高峰. 遥感与网络数据支撑的城市可持续性评价:进展与前瞻[J]. 地球科学进展, 2018, 33(10): 1075-1083.
[14] 王建, 车涛, 李震, 李弘毅, 郝晓华, 郑照军, 肖鹏峰, 李晓峰, 黄晓东, 钟歆玥, 戴礼云, 李红星, 柯长青, 李兰海. 中国积雪特性及分布调查[J]. 地球科学进展, 2018, 33(1): 12-15.
[15] 马晋, 周纪, 刘绍民, 王钰佳. 卫星遥感地表温度的真实性检验研究进展[J]. 地球科学进展, 2017, 32(6): 615-629.
阅读次数
全文


摘要