Please wait a minute...
img img
高级检索
地球科学进展  2007, Vol. 22 Issue (11): 1177-1184    DOI: 10.11867/j.issn.1001-8166.2007.11.1177
干旱气候变化与可持续发展     
数据同化在气候模拟中的应用——对中国西部区域气候研究的展望
蒲朝霞1,2
1. 美国犹他大学气象系,美国 犹他;2. 甘肃省干旱气候变化与健在重点实验室,甘肃 兰州 730020
Applications of Data Assimilation in Climate Modeling:A Perspective from Regional Climate Studies Over Western China
PU Zhao-xia1,2
1.Department of Meteorology, University of Utah, USA; 2.Key Open Laboratory of Arid Climate Change and Disaster Reduction of Gansu Province, Lanzhou 730000,China
 全文: PDF(665 KB)  
摘要:

现代数值模拟技术是一种把数值模型与观测资料结合起来对地球系统状态进行理想化评估的方法。除了在数值天气预报和气候分析中发挥重要作用外,数据同化技术也被应用于气候研究的许多方面,如模式初始化、确认及最优化。主要通过几个与中国西部区域气候研究紧密相关的议题,讨论了数据同化在气候模拟中的应用。并且阐述了其将面对的挑战、潜在方法学、最新研究成果和未来发展。

关键词: 数据同化气候模拟区域气候中国西部    
Abstract:

Modern  data  assimilation  techniques  represent  a  way  to  combine  the  numerical  model and observations together for an optimal estimation of the state of the earth system.  In addition to their vital  role  in  numerical weather prediction and climate  reanalysis,  data  assimilation techniques can  also  be  applied  in  many  aspects of  climate  study,  such  as model  initialization, validation and optimization.  The  paper  gives  a  brief  discussion on the  applications  of  data assimilation in climate modeling with emphases on a few key issues that are closely associated with  the  regional  climate  study  over  the  western  China.  Challenges,  potential  methodologies, recent results and future development are presented.

Key words: Data assimilation    Climate modeling    Regional climate    Western China.
收稿日期: 2007-08-20 出版日期: 2007-11-10
:  P435  
通讯作者: 蒲朝霞(1968-),女,博士,美国犹他大学气象系教授,主要从事数值模拟和气象资料的四维同化方面的研究.E-mail:Zhaoxia.Pu@utah.edu     E-mail: Zhaoxia.Pu@utah.edu
作者简介: 蒲朝霞(1968-),女,博士,美国犹他大学气象系教授,主要从事数值模拟和气象资料的四维同化方面的研究.E-mail:Zhaoxia.Pu@utah.edu
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
蒲朝霞

引用本文:

蒲朝霞. 数据同化在气候模拟中的应用——对中国西部区域气候研究的展望[J]. 地球科学进展, 2007, 22(11): 1177-1184.

PU Zhao-xia. Applications of Data Assimilation in Climate Modeling:A Perspective from Regional Climate Studies Over Western China. Advances in Earth Science, 2007, 22(11): 1177-1184.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2007.11.1177        http://www.adearth.ac.cn/CN/Y2007/V22/I11/1177

[1]Kalnay E, Atmospheric Modeling, Data Assimilation and Predictability [M]. Cambridge: Cambridge University Press, 2003.
[2]Talagrand O. Assimilation of observations, an introduction[J].Journal of Meteorological Society of Japan,75:191-209.
[3]Daley R.Linear non-divergent mass-wind laws on the sphere[J].Tellus, 1983, 35A:17-27.
[4]Evensen G. Data assimilation, the ensemble Kalman filter [M].  USA New york: Springer Verlag, 2006.
[5]Kopken C, Kelly G , Thepaut J N. Assimilation of meteosat radiances data within 4DVAR system at ECMWF: Assimilation experiences and forecast impact[J].Quartery Journal of Royal Meteorological Society,2004,130:2 277-2 292.
[6]LaMashall J, Uccellini L, Einaudi F, et al. The joint center for satellite data assimilation[J].Bulletin of the American Meteorological Society,2007,88(3):329-340
[7]Reichler T,  Roads J O. Time-space distribution of long-range atmospheric predictability[J].Journal of Atmospheric Science,2004, 61:249-263.
[8]Kistler R, Kalnay E, Collins W, et al. The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation[J].Bulletin of the American Meteorological Society,2001,82:247-267.
[9]Uppala S, et al.The ERA-40 reanalysis[J].Quarterly Journal of the Royal Meteorological Society,2005,131:2 961-3 012. 
[10]Mesinger F, DiMego G, Kalnay E. North American regional reanalysis[J]. Bulletin of the American Meteorological Society,2006, 87(3):343-360.
[11]Parrish D F, Derber J D. The National meteorological center spectral statistical interpolation analysis system[J].Monthly Weather Review,120:1 747-1 763.
[12]Rabier F, McNally A, Anderson E,et al.The ECMWF implementation of three- dimensional variational data assimilation (3D-Var).II: Structure function[J].Quarterly Journal of the Royal Meteorological Society,1998,124:1 809-1 830.
[13]Bailey D A, Lynch A H. Development of an Antarctic Regional Climate System Model. Part II: Station Validation and Surface Energy Balance[J]. Journal of Climate, 2000,13(8):1 351-1 361.
[14]King J C, Connolley W M. Validation of the Surface Energy Balance over the Antarctic Ice Sheets in the U.K. Meteorological Office Unified Climate Model[J].Journal of Climate,1997,10(6):1 273-1 287.
[15]Pu Z, Xu L, Salomonson V.  MODIS/Terra observed seasonal variations of snow cover over the Tibet Plateau[J].Geophysical Research Letter,34:101 029-101 034.
[16]Reichle H R, Koster R D, Dong J. Global soil moisture from satellite observations, land surface models, and ground data: Implications for data assimilation[J].Journal of Hydrometeorology,2004, 5(3):430-442.
[17]Ji M, Leetmaa A. Impact of data assimilation on ocean initialization and El Nino prediction[J]. Monthly Weather Review, 1997,125(5):742-753.

[1] 刘冠州, 梁信忠. 新一代区域气候模式(CWRF)国内应用进展[J]. 地球科学进展, 2017, 32(7): 781-787.
[2] 孙炜毅, 刘健, 王志远. 过去2000年东亚夏季风降水百年际变化特征及成因的模拟研究[J]. 地球科学进展, 2015, 30(7): 780-790.
[3] 兰鑫宇, 郭子祺, 田野, 雷霞, 王婕. 土壤湿度遥感估算同化研究综述[J]. 地球科学进展, 2015, 30(6): 668-679.
[4] 毛伏平, 张述文, 叶丹, 杨茜茜. 模式时间关联误差对集合平方根滤波估算土壤湿度的影响[J]. 地球科学进展, 2015, 30(6): 700-708.
[5] 王晓青,刘健,王志远. 过去2000年中国区域温度模拟与重建的对比分析[J]. 地球科学进展, 2015, 30(12): 1318-.
[6] 尹剑, 占车生, 顾洪亮, 王飞宇. 基于水文模型的蒸散发数据同化实验研究[J]. 地球科学进展, 2014, 29(9): 1075-1084.
[7] 熊喆. 不同积云对流参数化方案对黑河流域降水模拟的影响[J]. 地球科学进展, 2014, 29(5): 590-597.
[8] 刘彦华,张述文,毛璐,薛宏宇. 评估两类模式对陆面状态的模拟和估算[J]. 地球科学进展, 2013, 28(8): 913-922.
[9] 熊春晖,张立凤,关吉平,陶恒锐,苏佳佳. 集合—变分数据同化方法的发展与应用[J]. 地球科学进展, 2013, 28(6): 648-656.
[10] 陈大可,雷小途,王伟,王桂华,韩桂军,周磊. 上层海洋对台风的响应和调制机理[J]. 地球科学进展, 2013, 28(10): 1077-1086.
[11] 邹立维,周天军. 区域海气耦合模式研究进展[J]. 地球科学进展, 2012, 27(8): 857-865.
[12] 马建文,秦思娴. 数据同化算法研究现状综述[J]. 地球科学进展, 2012, 27(7): 747-757.
[13] 李得勤,段云霞,张述文. 土壤湿度观测、模拟和估算研究[J]. 地球科学进展, 2012, 27(4): 424-434.
[14] 摆玉龙, 李新, 韩旭军. 陆面数据同化系统误差问题研究综述[J]. 地球科学进展, 2011, 26(8): 795-804.
[15] 王晓君,马浩. 新一代中尺度预报模式(WRF)国内应用进展[J]. 地球科学进展, 2011, 26(11): 1191-1199.