地球科学进展 ›› 2020, Vol. 35 ›› Issue (5): 488 -496. doi: 10.11867/j.issn.1001-8166.2020.045

生态水文学理论与实践 上一篇    下一篇

流域水文遥感的科学问题与挑战
刘元波 1( ),吴桂平 1,赵晓松 1,范兴旺 1,潘鑫 2,甘国靖 1,刘永伟 1,郭瑞芳 1,周晗 3,王颖 4,王若男 1,崔逸凡 1   
  1. 1.中国科学院南京地理与湖泊研究所,江苏 南京 210008
    2.河海大学地球科学与工程学院,江苏 南京 211100
    3.武汉理工大学资源与环境工程学院,湖北 武汉 430070
    4.三江学院,江苏 南京 210012
  • 收稿日期:2019-12-27 修回日期:2020-04-19 出版日期:2020-05-10
  • 基金资助:
    国家自然科学基金项目“通江湖泊干旱多成因机制研究”(41430855);“含迟滞效应的非参数化蒸散计算方法研究”(51879255)

Remote Sensing for Watershed Hydrology: Issues and Challenges

Yuanbo Liu 1( ),Guiping Wu 1,Xiaosong Zhao 1,Xingwang Fan 1,Xin Pan 2,Guojing Gan 1,Yongwei Liu 1,Ruifang Guo 1,Han Zhou 3,Ying Wang 4,Ruonan Wang 1,Yifan Cui 1   

  1. 1.Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
    2.School of Earth Science and Engineering, Hohai University, Nanjing 211100, China
    3.School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070
    4.Sanjiang University, Nanjing 210012, China
  • Received:2019-12-27 Revised:2020-04-19 Online:2020-05-10 Published:2020-06-05
  • About author:Liu Yuanbo (1969-), male, Liangshan County, Shandong Province, Professor. Research areas include hydrology and quantitative remote sensing. E-mail: ybliu@niglas.ac.cn
  • Supported by:
    the National Natural Science Foundation of China "Multicausality of droughts in Yangtze-River connected lake"(41430855);"Nonparametric approach for estimating evapotranspiration with hysteretic effect"(51879255)

21世纪以来,水文遥感得到长足发展并成为当前地球科学的研究热点之一,同时也在流域生态水文过程研究中发挥了不可替代的作用,成为当前流域生态水文研究的重要手段。流域水文遥感在研究内容、研究方法、实际应用等方面具有流域整体性要求,涉及流域水量收支的闭合约束、要素反演检验的流域有效性以及流域水文模型的数据同化,指出流域尺度的反演检验、反演结果的不确定性和数据同化的误差溯源是当前面临的科学挑战。

With significant development since the beginning of the 21st century, hydrologic remote sensing becomes one of the most active disciplines in earth sciences, offering numerous opportunities and advances for watershed hydrology and other disciplines of geography. This commentary highlights the specialty and restriction of remote sensing for watershed hydrology on three aspects: watershed closure in water budget, watershed-scale effectiveness of hydrologic parameter retrievals, and watershed model inputs for data assimilation. The current challenges include rational watershed-scale validation, uncertainty control in retrievals, and error sources in data assimilation.

中图分类号: 

图1 流域水量收支过程及两类水文变量(状态变量与界面通量)遥感原理概念图
Fig.1 Conceptual illustration of watershed-scale water budgets and basic remote sensing principles respectively for state and flux variables
图2 水文要素的遥感反演原理、代表算法及适用条件
Fig.2 Remote sensing of hydrologic components: Principles, retrieval algorithms and restrictions
1 Brutsaert W. Hydrology: An Introduction[M]. Cambridge,UK: Cambridge University Press, 2005.
2 Hauth F F, Weinman J A. Investigation of clouds above snow surfaces utilizing radiation measurements obtained from the Nimbus II satellite[J]. Remote Sensing of Environment, 1969, 1: 7-11.
3 Hickman G D, Hogg J E. Application of an airborne pulsed laser for near shore bathymetric measurements[J]. Remote Sensing of Environment, 1969, 1: 47-58.
4 Greenwood J A, Nathan A, Neumann G, et al. Oceanographic applications of radar altimetry from a spacecraft[J]. Remote Sensing of Environment, 1969, 1: 71-80.
5 Martin D W, Scherer W D. Review of satellite rainfall estimation methods[J]. Bulletin of the American Meteorological Society, 1973, 54: 661-674.
6 Jackson R D. Evaluating evapotranspiration at local and regional scales[J]. Proceedings of the IEEE, 1985, 73(6): 1 086-1 096.
7 Moran M S, Jackson R D. Assessing the spatial distribution of evapotranspiration using remotely sensed inputs[J]. Journal of Environmental Quality, 1991, 20(4): 725-737.
8 Chang N, Hong Y. Multiscale Hydrologic Remote Sensing: Perspectives and Applications[M]. Florida, USA:CRC Press, 2012.
9 Baghdadi N, Zribi M. Land Surface Remote Sensing in Continental Hydrology[M]. London: ISTE Press Ltd., 2016.
10 Liu Yuanbo, Wu Guiping, Ke Changqing. Hydrologic Remote Sensing[M]. Beijing: Science Press, 2016.
刘元波, 吴桂平, 柯长青. 水文遥感[M]. 北京:科学出版社, 2016.
11 Munier S, Aires F. A new global method of satellite dataset merging and quality characterization constrained by the terrestrial water budget[J]. Remote Sensing of Environment, 2018, 205:119-130.
12 Pan M, Wood E F. Data assimilation for estimating the terrestrial water budget using a constrained ensemble Kalman filter[J]. Journal of Hydrometeorology, 2006, 7:534-547.
13 Sheffield J, Ferguson C, Troy T J, et al. Closing the terrestrial water budget from satellite remote sensing[J]. Geophysical Research Letters, 2009, 36: L07403. DOI:10.1029/2009GL037338.
doi: 10.1029/2009GL037338    
14 Gao H, Tang Q, Ferguson C, et al. Estimating the water budget of major US river basins via remote sensing[J]. International Journal of Remote Sensing, 2010, 31:3 955-3 978.
15 Sahoo A K, Pan M, Troy T J, et al. Reconciling the global terrestrial water budget using satellite remote sensing[J]. Remote Sensing of Environment, 2011, 115(8):1 850-1 865.
16 Pan M, Sahoo A K, Troy T J, et al. Multisource estimation of long-term terrestrial water budget for major global river basins[J]. Journal of Climate, 2012, 25:3 191-3 206.
17 Wang H, Guan H, Gutiérrez-Jurado H A, et al. Examination of water budget using satellite products over Australia[J]. Journal of Hydrology, 2014, 511:546-554.
18 Wang Y, Liu Y, Jin J. Contrast effects of vegetation cover change on evapotranspiration during a revegetation period in the Poyang Lake Basin, China[J]. Forests, 2018, 9:217, 14.
19 Zhang D, Zhang Q, Werner A, et al. GRACE-based hydrological drought evaluation of the Yangtze River Basin, China[J]. Journal of Hydrometeorology, 2016, 17(3):811-828.
20 Pellet V, Aires F, Munier S, et al. Integrating multiple satellite observations into a coherent dataset to monitor the full water cycle-application to the Mediterranean region[J]. Hydrology and Earth System Sciences, 2019, 23:465-491.
21 Song Ping, Liu Yuanbo, Liu Yanchun. Advances in satellite retrieval of terrestrial surface water parameters[J]. Advances in Earth Science, 2011, 26(7): 731-740.
宋平, 刘元波, 刘燕春. 陆地水体参数的卫星遥感反演研究进展[J]. 地球科学进展, 2011, 26(7): 731-740.
22 Liu Yuanbo, Fu Qiaoni, Song Ping, et al. Satellite retrieval of precipitation: An overview[J]. Advances in Earth Science, 2011, 26(11): 1 162-1 172.
刘元波, 傅巧妮, 宋平, 等. 卫星遥感反演降水研究综述[J]. 地球科学进展, 2011, 26(11): 1 162-1 172.
23 Chen Shulin, Liu Yuanbo, Wen Zuomin. Satellite retrieval of soil moisture: An overview[J]. Advances in Earth Science, 2012, 27(11): 1 192-1 203.
陈书林, 刘元波, 温作民. 卫星遥感反演土壤水分研究综述[J]. 地球科学进展, 2012, 27(11): 1 192-1 203.
24 Guo Ruifang, Liu Yuanbo. Multi-satellite retrieval of high resolution precipitation: An overview[J]. Advances in Earth Science, 2015, 30(8): 891-903.
郭瑞芳, 刘元波. 多传感器联合反演高分辨率降水方法综述[J]. 地球科学进展, 2015, 30(8): 891-903.
25 Tang Qiuhong, Zhang Xuejun, Qi Youcun, et al. Remote sensing of the terrestrial water cycle: Progress and perspectives[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1 872-1 884.
汤秋鸿, 张学君, 戚友存, 等. 遥感陆地水循环的进展与展望[J]. 武汉大学学报:信息科学版, 2018, 43 (12): 1 872-1 884.
26 Wang Jinfeng, Xu Chengdong. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134.
王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017, 72(1): 116-134.
27 Ke Wenli, Chen Chengzhong, Ji Hongxia, et al. A loop-like relationship between water surface area of Lake Dongting and water level at Chenglingji, the Yangtze River[J]. Journal of Lake Sciences, 2017, 29(3): 753-764.
柯文莉, 陈成忠, 吉红霞, 等.洞庭湖水面面积与城陵矶水位之间的绳套关系[J]. 湖泊科学, 2017, 29(3): 753-764.
28 Wu G, Liu Y. Capturing variations in inundation with satellite remote sensing in a morphologically complex, large lake [J]. Journal of Hydrology, 2015, 523: 14-23.
29 Wu G, Liu Y. Combining multispectral imagery with in situ topographic data reveals complex water level variation in China’s largest freshwater lake [J]. Remote Sensing, 2015, 7: 13 466-13 484.
30 Feng H, Liu Y. Combined effects of precipitation and air temperature on soil moisture in different land covers in a humid basin[J]. Journal of Hydrology, 2015, 531:1 129-1 140.
31 Feng H, Liu Y. Trajectory based detection of forest-change impacts on surface soil moisture at a basin scale [Poyang Lake Basin, China] [J]. Journal of Hydrology, 2014, 514:337-346.
32 Romilly T, Gebremichael M. Evaluation of satellite rainfall estimates over Ethiopian river basins[J]. Hydrology and Earth System Sciences, 2011, 15:1 505-1 514.
33 Zulkafli Z, Buytaert W, Onof C, et al. A comparative performance analysis of TRMM 3B42 (TMPA) Versions 6 and 7 for hydrological applications over Andean-Amazon River Basins[J]. Journal of Hydrometeorology, 2014, 15:581-592.
34 Guo R, Liu Y. Evaluation of satellite precipitation products with rain gauge data at different scales: Implications for hydrological applications[J]. Water, 2016, 8:281.
35 Zad S, Zulkafli Z, Muharram F. Satellite rainfall (TRMM 3B42-V7) performance assessment and adjustment over Pahang River Basin, Malaysia [J]. Remote Sensing, 2018, 10(3): 388.
36 Michot V, Vila D, Arvor D, et al. Performance of TRMM TMPA 3B42 V7 in replicating daily rainfall and regional rainfall regimes in the Amazon Basin (1998-2013) [J]. Remote Sensing, 2018, 10(12): 1 879.
37 Wu Guiping, Liu Yuanbo, Zhao Xiaosong, et al. Spatio-temporal variations of evapotranspiration in Poyang Lake Basin using MOD16 products [J]. Geographical Research, 2013, 32(4): 617-627.
吴桂平, 刘元波, 赵晓松, 等. 基于MOD16产品的鄱阳湖流域地表蒸散量时空分布特征[J]. 地理研究, 2013, 32(4): 617-627.
38 Yang Xiuqin, Wang Lei, Wang Kai. Spatio-temporal distribution of terrestrial evapotranspiration in Huaihe River Basin based on MOD16 ET data[J]. Journal of Glaciology and Geocryology, 2015, 37(5): 1 343-1 352.
杨秀芹, 王磊, 王凯. 基于MOD16产品的淮河流域实际蒸散发时空分布[J]. 冰川冻土, 2015, 37(5): 1 343-1 352.
39 Wei Hejie, Zhang Yanfang, Zhu Ni, et al. Spatial and temporal characteristics of ET in the Weihe River Basin based on MOD16 data [J]. Journal of Desert Research, 2015, 35(2): 414-422.
位贺杰, 张艳芳, 朱妮, 等. 基于MOD16数据的渭河流域地表实际蒸散发时空特征[J]. 中国沙漠, 2015, 35(2): 414-422.
40 Zhang Jing, Ren Zhiyuan. Spatiotemporal characteristics of evapotranspiration based on MOD16 in the Hanjiang River Basin [J]. Scientia Geographica Sinica, 2017, 37(2): 274-282.
张静, 任志远. 基于MOD16的汉江流域地表蒸散发时空特征[J]. 地理科学, 2017, 37(2): 274-282.
41 Su F, Hong Y, Lettenmaier D P. Evaluation of TRMM Multisatellite Precipitation Analysis (TMPA) and its utility in hydrologic prediction in the La Plata Basin[J]. Journal of Hydrometeorology, 2008, 9:622-640.
42 Getirana A, Espinoza J, Ronchail J, et al. Assessment of different precipitation datasets and their impacts on the water balance of the Negro River Basin[J]. Journal of Hydrology, 2011, 404:304-322.
43 Nikolopoulos E, Anagnostou E. Understanding the scale relationships of uncertainty propagation of satellite rainfall through a distributed hydrologic model[J]. Journal of Hydrometeorology, 2011, 11:520-532.
44 Li X H, Zhang Q, Xu C Y. Suitability of the TRMM satellite rainfalls in driving a distributed hydrological model for water balance computations in Xinjiang catchment, Poyang Lake Basin[J]. Journal of Hydrology, 2012, 426/427:28-38.
45 Maggionia V, Massari C. On the performance of satellite precipitation products in riverine flood modeling: A review[J]. Journal of Hydrology, 2018, 558:214-224.
46 Li Xin, Huang Chunlin, Che Tao, et al. Advances in land surface data assimilation in China [J]. Progress in Natural Science, 2007, (2): 163-173.
李新, 黄春林, 车涛, 等.中国陆面数据同化系统研究的进展与前瞻[J]. 自然科学进展, 2007, (2): 163-173.
47 Ma Jianwen, Qin Sixian. Recent advances and development of data assimilation algorithms[J]. Advances in Earth Science, 2012, 27(7): 747-757.
马建文, 秦思娴. 数据同化算法研究现状综述[J]. 地球科学进展, 2012, 27(7): 747-757.
48 Reichle R, Koster R. Assessing the impact of horizontal error correlations in background fields on soil moisture estimation[J]. Journal of Hydrometeorology, 2003, 4(6):1 229-1 242.
49 Yan H, Moradkhani H. Combined assimilation of streamflow and satellite soil moisture with the particle filter and geostatistical modeling [J]. Advances in Water Resources, 2016, 94:364-378.
50 Martens B, Miralles D, Lievens H, et al. Improving terrestrial evaporation estimates over continental Australia through assimilation of SMOS soil moisture[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 48: 146-162.
51 Liu Y, Wang W, Liu Y. ESA CCI soil moisture assimilation in SWAT for improved hydrological simulation in Upper Huai River Basin[J]. Advances in Meteorology, 2018. DOI:10.1155/2018/7301314.
doi: 10.1155/2018/7301314    
52 Li Y, Grimaldi S, Walker J, et al. Application of remote sensing data to constrain operational rainfall-driven flood forecasting: A review[J]. Remote Sensing, 2016, 8(6): 456.
53 Liu Yuanbo, Zhao Xiaosong, Wu Guiping. A primary investigation on the formation of frequent droughts in the Poyang Lake Basin in recent decades [J]. Resources and Environment in the Yangtze Basin, 2014, 24(1):131-138.
刘元波, 赵晓松, 吴桂平.近十年鄱阳湖区极端干旱事件频发现象成因初析[J]. 长江流域资源与环境, 2014, 23(1): 131-138.
54 Liu Y, Wu G. Hydroclimatological influences on recently increased droughts in China's largest freshwater lake[J]. Hydrology & Earth System Sciences, 2016, 20: 93-107.
55 Liu Y, Wu G, Zhao X. Recent declines in China’s largest freshwater lake: Trend or regime shift?[J]. Environmental Research Letters, 2013, 8(1). DOI: 10.1088/1748-9326/8/1/014010.
doi: 10.1088/1748-9326/8/1/014010    
56 Zhang D, Zhang Q, Qiu J, et al. Intensification of hydrological drought due to human activity in the middle reaches of the Yangtze River, China[J]. Science of the Total Environment, 2018, 637/638: 1 432-1 442.
57 Zhang Y, Pan M, Wood E. On creating global gridded terrestrial water budget estimates from satellite remote sensing [J]. Surv Geophys, 2016, 37: 249-268.
58 Liu Y, Liu Y, Wang W. Inter-comparison of satellite-retrieved and Global Land Data Assimilation System-simulated soil moisture datasets for global drought analysis[J]. Remote Sensing of Environment, 2019, 220:1-18.
59 Guo Ruifang, Liu Yuanbo. Strategy and method for satellite precipitation data evaluation: An overview[J]. Remote Sensing Technology and Application, 2018, 33(6):983-993.
郭瑞芳, 刘元波. 遥感降水数据精度检验策略及检验方法综述[J]. 遥感技术与应用, 2018, 33(6): 983-993.
60 Cheng Guodong, Li Xin. Integrated research methods in watershed science[J]. Science China Earth Sciences, 2015, 45(6):811-819.
程国栋, 李新. 流域科学及其集成研究方法 [J]. 中国科学: 地球科学, 2015, 45(6): 811-819.
[1] 常明恒, 左洪超, 摆玉龙, 段济开. 两种耦合模糊控制的局地化方法研究[J]. 地球科学进展, 2021, 36(2): 185-197.
[2] 刘娜, 王辉, 凌铁军, 祖子清. 全球业务化海洋预报进展与展望[J]. 地球科学进展, 2018, 33(2): 131-140.
[3] 兰鑫宇, 郭子祺, 田野, 雷霞, 王婕. 土壤湿度遥感估算同化研究综述[J]. 地球科学进展, 2015, 30(6): 668-679.
[4] 毛伏平, 张述文, 叶丹, 杨茜茜. 模式时间关联误差对集合平方根滤波估算土壤湿度的影响[J]. 地球科学进展, 2015, 30(6): 700-708.
[5] 尹剑, 占车生, 顾洪亮, 王飞宇. 基于水文模型的蒸散发数据同化实验研究[J]. 地球科学进展, 2014, 29(9): 1075-1084.
[6] 刘彦华,张述文,毛璐,薛宏宇. 评估两类模式对陆面状态的模拟和估算[J]. 地球科学进展, 2013, 28(8): 913-922.
[7] 熊春晖,张立凤,关吉平,陶恒锐,苏佳佳. 集合—变分数据同化方法的发展与应用[J]. 地球科学进展, 2013, 28(6): 648-656.
[8] 陈大可,雷小途,王伟,王桂华,韩桂军,周磊. 上层海洋对台风的响应和调制机理[J]. 地球科学进展, 2013, 28(10): 1077-1086.
[9] 马建文,秦思娴. 数据同化算法研究现状综述[J]. 地球科学进展, 2012, 27(7): 747-757.
[10] 李得勤,段云霞,张述文. 土壤湿度观测、模拟和估算研究[J]. 地球科学进展, 2012, 27(4): 424-434.
[11] 摆玉龙, 李新, 韩旭军. 陆面数据同化系统误差问题研究综述[J]. 地球科学进展, 2011, 26(8): 795-804.
[12] 李新,摆玉龙. 顺序数据同化的Bayes滤波框架[J]. 地球科学进展, 2010, 25(5): 515-522.
[13] 邢雅娟,刘东生,王鹏新. 遥感信息与作物生长模型的耦合应用研究进展[J]. 地球科学进展, 2009, 24(4): 444-451.
[14] 周剑,根绪,李新,杨永民,潘小多. 数据同化算法在青藏高原高寒生态系统能量—水分平衡分析中的应用[J]. 地球科学进展, 2008, 23(9): 965-973.
[15] 韩旭军,李新. 非线性滤波方法与陆面数据同化[J]. 地球科学进展, 2008, 23(8): 813-820.
阅读次数
全文


摘要