[119] |
Comba S, Braun J.A new physical model based on cascading column experiments to reproduce the radial flow and transport of micro-iron particles[J]. Journal of Contaminant Hydrology, 2012, 140: 1-11.
|
[120] |
Vecchia E D, Luna M, Sethi R.Transport in porous media of highly concentrated iron micro-and nanoparticles in the presence of xanthan gum[J]. Environmental Science & Technology, 2009, 43(23): 8 942-8 947.
|
[121] |
Chen K F, Li S, Zhang W X.Renewable hydrogen generation by bimetallic zero valent iron nanoparticles[J]. Chemical Engineering Journal, 2011, 170(2): 562-567.
|
[122] |
Hsieh S H, Horng J J.Deposition of Fe-Ni nanoparticles on Al2O3 for dechlorination of chloroform and trichloroethylene[J]. Applied Surface Science, 2006, 253(3): 1 660-1 665.
|
[123] |
Nutt M O, Hughes J B, Wong M S.Designing Pd-on-Au bimetallic nanoparticle catalysts for trichloroethene hydrodechlorination[J]. Environmental Science & Technology, 2005, 39: 1 346-1 353.
|
[124] |
He F, Zhao D.Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water[J]. Environmental Science & Technology, 2005, 39(9): 3 314-3 320.
|
[125] |
Nie X, Liu J, Zeng X, et al.Rapid degradation of hexachlorobenzene by micron Ag/Fe bimetal particles[J]. Journal of Environmental Sciences, 2013, 25(3): 473-478.
|
[126] |
Xu F, Deng S, Xu J, et al.Highly active and stable Ni-Fe bimetal prepared by ball milling for catalytic hydrodechlorination of 4-chlorophenol[J]. Environmental Science & Technology, 2012, 46(8): 4 576-4 582.
|
[127] |
Coles C A, Ramachandra Rao S, Yong R N.Lead and cadmium interactions with mackinawite: Retention mechanisms and the role of pH[J]. Environmental Science & Technology, 2000, 34(6): 996-1 000.
|
[128] |
Liu J R, Valsaraj K T, Devai I, et al.Immobilization of aqueous Hg(II) by mackinawite (FeS)[J]. Journal of Hazardous Materials, 2008, 157(2): 432-440.
|
[129] |
Gallegos T J, Hyun S P, Hayes K F.Spectroscopic investigation of the uptake of arsenite from solution by synthetic mackinawite[J]. Environmental Science & Technology, 2007, 41(22): 7 781-7 786.
|
[130] |
Han Y S, Gallegos T J, Demond A H, et al.FeS-coated sand for removal of arsenic (III) under anaerobic conditions in permeable reactive barriers[J]. Water Research, 2011, 45(2): 593-604.
|
[1] |
Qiu J.China faces up to groundwater crisis[J]. Nature News, 2010,466(7 304): 308.
|
[2] |
Wen Dongguang, Lin Liangjun, Sun Jichao, et al.Groundwater quality and contamination assessment in the main plains of estern China[J]. Earth Science—Journal of China University of Geosciences, 2012, 37(2): 220-228.
|
|
[文冬光, 林良俊, 孙继朝, 等. 中国东部主要平原地下水质量与污染评价[J]. 地球科学——中国地质大学学报, 2012, 37(2): 220-228.]
|
[3] |
Bi E, Liu Y, He J, et al.Screening of emerging volatile organic contaminants in shallow groundwater in east China[J]. Groundwater Monitoring & Remediation, 2012, 32(1):53-58.
|
[4] |
Zhang Zhaoji, Fei Yuhong, Guo Chunyan, et al. Regional groundwater contamination assessment in the north China plain[J]. Journal of Jilin University(Earth Science Edition), 2012, 42(5): 1456-1461.
|
|
[张兆吉, 费宇红, 郭春艳, 等. 华北平原区域地下水污染评价[J]. 吉林大学学报:地球科学版, 2012, 42(5): 1 456-1 461.]
|
[5] |
Chen L, Jin S, Liu Y L, et al.Presence of semi-volatile organic contaminants in shallow groundwater of selected regions in China[J]. Groundwater Monitoring & Remediation, 2014, 34(4): 33-43.
|
[6] |
U.S. EPA. Field Applications of In-Situ Remediation Technologies: Permeable Reactive Barriers[R/OL]. Washington DC:U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response Technology Innovation Office, 2002. .
URL
|
[7] |
Powell R M, Puls R W, Blowes D W, et al. Permeable Reactive Barrier Technologies for Contaminant Remediation. Office of Research and Development, Office of Solid Waste and Emergency Response[R/OL]. Washington DC: U.S. EPA, 1998. .
URL
|
[8] |
Interstate Technology and Regulatory Council (ITRC). Permeable Reactive Barriers: Lessons Learned/New Directions. PRB-4. Permeable Reactive Barriers Team[R/OL]. Washington DC, 2005. .
URL
|
[131] |
Jeong H Y, Klaue B, Blum J D, et al. Sorption of mercuric ion by synthetic nanocrystalline mackinawite (FeS)[J]. Environmental Science & Technology, 2007, 41(22): 7699-7705.
|
[132] |
Elsner M, Schwarzenbach R P, Haderlein S B.Reactivity of Fe(II)-bearing minerals toward reductive transformation of organic contaminants[J]. Environmental Science & Technology, 2004, 38(3): 799-807.
|
[133] |
Henderson A D, Demond A H.Permeability of iron sulfide (FeS)-based materials for groundwater remediation[J]. Water Research, 2013, 47(3): 1 267-1 276.
|
[134] |
Oostrom M, Wietsma T W, Covert M A, et al.Zero-valent iron emplacement in permeable porous media using polymer additions[J]. Groundwater Monitoring and Remediation, 2007,27(1): 122-130.
|
[135] |
Yang J, Cao L, Guo R, et al.Permeable reactive barrier of surface hydrophobic granular activated carbon coupled with elemental iron for the removal of 2, 4-dichlorophenol in water[J]. Journal of Hazardous Materials, 2010, 184(1): 782-787.
|
[136] |
Zhou D, Li Y, Zhang Y, et al.Column test-based optimization of the Permeable Reactive Barrier (PRB) technique for remediating groundwater contaminated by landfill leachates[J]. Journal of Contaminant Hydrology, 2014, 168: 1-16.
|
[137] |
Liu S J, Jiang B, Huang G Q, et al.Laboratory column study for remediation of MTBE-contaminated groundwater using a biological two-layer permeable barrier[J]. Water Research, 2006, 40(18): 3 401-3 408.
|
[138] |
Liu Zhibin, Fang Wei, Chen Zhilong.Advances in air spaerging technology of saturated zone[J]. Advances in Earth Science, 2013, 28(10): 1 154-1 159.
|
|
[刘志彬, 方伟, 陈志龙. 饱和带地下水曝气修复技术研究进展[J]. 地球科学进展, 2013, 28(10): 1 154-1 159.]
|
[139] |
Huling S G, Arnold R G, Sierka R A, et al.Contaminant adsorption and oxidation via Fenton reaction[J]. Journal of Environmental Engineering, 2000, 126(7): 595-600.
|
[140] |
Chiu C A, Hristovski K, Huling S, et al.In-situ regeneration of saturated granular activated carbon by an iron oxide nanocatalyst[J]. Water Research, 2013, 47(4): 1 596-1 603.
|
[9] |
Archer W L, Harter M K.Reactivity of carbon tetrachloride with a series of metals[J]. Corrosion, 1978, 34(5): 159-162.
|
[10] |
Archer W L.Aluminum-1, 1, 1-trichloroethane. Reactions and inhibition[J]. Industrial & Engineering Chemistry Product Research and Development, 1982, 21(4): 670-672.
|
[11] |
Sweeny K H, Fischer J R. Reductive degradation of halogenated pesticides[P].U.S. Patent 3, 640, 821. 1972-2-8.
|
[12] |
Reynolds G W, Hoff J T, Gillham R W.Sampling bias caused by materials used to monitor halocarbons in groundwater[J]. Environmental Science & Technology, 1990, 24(1): 135-142.
|
[13] |
Gillham R W, O’Hannesin S F. Enhanced degradation of halogenated aliphatics by zerovalent iron[J]. Ground Water, 1994, 32(6): 958-967.
|
[14] |
O’Hannesin S F, Gillham R W. Long-term performance of an in situ “iron wall” for remediation of VOCs[J]. Ground Water, 1998, 36(1): 164-170.
|
[15] |
Warner S D, Longino B L, Zhang M, et al.The first commercial permeable reactive barrier composed of granular iron: Hydraulic and chemical performance at 10 years of operation[J]. IAHS Publication, 2005, 298: 32.
|
[16] |
Gillham R W, Vogan J, Gui L, et al.Iron barrier walls for chlorinated solvent remediation[M]∥Stroo H, Ward C H, eds. Situ Remediation of Chlorinated Solvent Plumes. New York: Springer-Verlag, 2010: 537-571.
|
[17] |
Chen L, Liu F, Liu Y, et al.Benzene and toluene biodegradation down gradient of a zero-valent iron permeable reactive barrier[J]. Journal of Hazardous Materials, 2011, 188(1): 110-115.
|
[18] |
Obiri-Nyarko F, Grajales-Mesa S J, Malina G. An overview of permeable reactive barriers for in situ sustainable groundwater remediation[J]. Chemosphere, 2014, 111: 243-259.
|
[141] |
Anfruns A, Garcia-Suarez E J, Montes-Morn M A, et al. New insights into the influence of activated carbon surface oxygen groups on H2O2 decomposition and oxidation of pre-adsorbed volatile organic compounds[J]. Carbon, 2014, 77: 89-98.
|
[142] |
Gao Fei, Liu Fei, Chen Honghan.Progress on remediation of Trichloroethene (TCE) in soil and groundwater contaminated source area[J]. Advances in Earth Science, 2008, 23(8): 821-829.
|
|
[高霏, 刘菲, 陈鸿汉. 三氯乙烯污染土壤和地下水污染源区的修复研究进展[J]. 地球科学进展, 2008, 23(8): 821-829.]
|
[143] |
Do S H,Kwon Y J,Kong S H.Feasibility study on an oxidant-injected permeable reactive barrier to treat BTEX contamination:Adsorptive and catalytic characteristics of waste-reclaimed adsorbent[J].Journal of Hazardous Materials,2011,191(1):19-25.
|
[144] |
Jiang X, Qiao J, Lo I M, et al.Enhanced paramagnetic Cu2+ ions removal by coupling a weak magnetic field with zero valent iron[J]. Journal of Hazardous Materials, 2015, 283: 880-887.
|
[145] |
Liang L, Guan X, Shi Z, et al.Coupled effects of aging and weak magnetic fields on sequestration of selenite by Zero-Valent iron[J]. Environmental Science & Technology, 2014, 48(11): 6 326-6 334.
|
[146] |
Liang L, Sun W, Guan X, et al.Weak magnetic field significantly enhances selenite removal kinetics by zero valent iron[J]. Water Research, 2014, 49: 371-380.
|
[147] |
Ruiz C, Mena E, Caizares P, et al.Removal of 2, 4, 6-trichlorophenol from spiked clay soils by electrokinetic soil flushing assisted with granular activated carbon permeable reactive barrier[J]. Industrial and Engineering Chemistry Research, 2013, 53(2): 840-846.
|
[148] |
García Y, Ruiz C, Mena E, et al.Removal of nitrates from spiked clay soils by coupling electrokinetic and permeable reactive barrier technologies[J]. Journal of Chemical Technology and Biotechnology, 2014,90(9):1 719-1 726.
|
[149] |
Mena E, Ruiz C, Villaseor J, et al.Biological permeable reactive barriers coupled with electrokinetic soil flushing for the treatment of diesel-polluted clay soil[J]. Journal of Hazardous Materials, 2015, 283: 131-139.
|
[150] |
Chen L, Jin S, Fallgren P H, et al.Electrochemical depassivation of zero-valent iron for trichloroethene reduction[J]. Journal of Hazardous Materials, 2012, 239: 265-269.
|
[19] |
Odziemkowski M S, Gillham R W, Focht R.Electroless hydrogenation of trichloroethylene by Fe-Ni (P) galvanic couples[J]. Environmental Issues in the Electronics/Semiconductor Industries and Electrochemical/Photochemical Methods for Pollution Abatement, 1998, 98: 91-102.
|
[20] |
Thiruvenkatachari R, Vigneswaran S, Naidu R.Review: Permeable reactive barrier for groundwater remediation[J]. Journal of Industrial and Engineering Chemistry, 2008, 14(2): 145-156.
|
[21] |
Wang C B, Zhang W X.Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs[J]. Environmental Science & Technology, 1997, 31(7): 2 154-2 156.
|
[22] |
Careghini A, Saponaro S, Sezenna E.Biobarriers for groundwater treatment: A review[J]. Water Science & Technology, 2012, 67(3): 453-468.
|
[23] |
Ritter K, Odziemkowski M S, Simpgraga R, et al.An in situ study of the effect of nitrate on the reduction of trichloroethylene by granular iron[J]. Journal of Contaminant Hydrology, 2003, 65(1): 121-136.
|
[24] |
Noubactep C.The fundamental mechanism of aqueous contaminant removal by metallic iron[J]. Water SA, 2010,36(5): 663-670.
|
[25] |
Phillips D H, Nooten T V, Bastiaens L, et al.Ten year performance evaluation of a field-scale zero-valent iron permeable reactive barrier installed to remediate trichloroethene contaminated groundwater[J]. Environmental Science & Technology, 2010, 44(10): 3 861-3 869.
|
[26] |
Wilkin R T, Acree S D, Ross R R, et al.Fifteen-year assessment of a permeable reactive barrier for treatment of chromate and trichloroethylene in groundwater[J]. Science of the Total Environment, 2014, 468: 186-194.
|
[27] |
Farrell J, Kason M, Melitas N, et al.Investigation of the long-term performance of zero-valent iron for reductive dechlorination of trichloroethylene[J]. Environmental Science and Technology, 2000, 34(3): 514-521.
|
[28] |
Liu Fei.Study on Volatile Chlorinated Hydrocarbons in Groundwater Using the Permeable Reactive Barrier of Zero Valence Iron[D]. Beijing: China University of Geosciences, 2002.
|
|
[刘菲. 处理地下水中挥发性氯代脂肪烃的零价铁渗透反应格栅研究[D]. 北京:中国地质大学(北京), 2002.]
|
[29] |
Burris D R, Allen-King R M, Manoranjan V S, et al. Chlorinated ethene reduction by cast iron: Sorption and mass transfer[J]. Journal of Environmental Engineering, 1998, 124(10): 1 012-1 019.
|
[30] |
Agrawal A, Tratnyek P G.Reduction of nitro-aromatic compounds by zero-valent iron metal[J]. Environmental Science & Technology, 1995, 30(1): 153-160.
|
[31] |
Matheson L J, Tratnyek P G.Reductive dehalogenation of chlorinated methanes by iron metal[J]. Environmental Science & Technology, 1994, 28(12): 2 045-2 053.
|
[32] |
Su C, Puls R W.Kinetics of trichloroethylene reduction by zerovalent iron and tin: Pretreatment effect, apparent activation energy, and intermediate products[J]. Environmental Science & Technology, 1999, 33: 163-168.
|
[33] |
Geiger C L, Ruiz N E, Clausen C A, et al.Ultrasound pretreatment of elemental iron: Kinetic studies of dehalogenation reaction enhancement and surface effects[J]. Water Research, 2002, 36(5): 1 342-1 350.
|
[34] |
Lin C J, Lo S L.Effects of iron surface pretreatment on sorption and reduction kinetics of trichloroethylene in a closed batch system[J]. Water Research, 2005, 39(6): 1 037-1 046.
|
[35] |
Ruiz N, Seal S, Reinhart D.Surface chemical reactivity in selected zero-valent iron samples used in groundwater remediation[J]. Journal of Hazardous Materials, 2000, B80: 107-117.
|
[36] |
Támara M L, Butler E C.Effects of iron purity and groundwater characteristics on rates and products in the degradation of carbon tetrachloride by iron metal[J]. Environmental Science & Technology, 2004, 38(6): 1 866-1 876.
|
[37] |
Parbs A, Ebert M, Dahmke A.Long-term effects of dissolved carbonate species on the degradation of trichloroethylene by zerovalent iron[J]. Environmental Science & Technology, 2007, 41(1): 291-296.
|
[38] |
Vikesland P J, Klausen J, Zimmermann H, et al.Longevity of granular iron in groundwater treatment processes: Changes in solute transport properties over time[J]. Journal of Contaminant Hydrology, 2003, 64(1): 3-33.
|
[39] |
Chen J L, Al-Abed S R, Ryan A, et al. Effects of pH on dechlorination of trichloroethylene by zero-valent iron[J]. Journal of Hazardous Materials, 2001, 83(3): 243-254.
|
[151] |
Qin Ronggao, Cao Guangzhu, Wu Yanqing.Review of the study of groundwater flow and solute transport in heterogeneous aquifer[J]. Advances in Earth Science, 2014, 29(1): 30-41.
|
|
[覃荣高,曹广祝,仵彦卿. 非均质含水层中渗流与溶质运移研究进展[J]. 地球科学进展, 2014, 29(1): 30-41.]
|
[40] |
Deng B, Burris D R, Campbell T J.Reduction of vinyl chloride in metallic iron-water systems[J]. Environmental Science & Technology, 1999, 33(15): 2 651-2 656.
|
[41] |
Gotpagar J, Grulke E, Tsang T, et al.Reductive dehalogenation of trichloroethylene using zero valent iron[J]. Environmental Progress, 1997, 16(2): 137-143.
|
[42] |
Kenneke J F, Mccutcheon S C.Use of pretreatment zones and zero-valent iron for the remediation of chloroalkenes in an oxic aquifer[J]. Environmental Science & Technology, 2003, 37(12): 2 829-2 835.
|
[43] |
Thangavadivel K, Wang W H, Birke V, et al.A comparative study of Trichloroethylene (TCE) degradation in contaminated Groundwater (GW) and TCE-Spiked deionised water using Zero Valent Iron (ZVI) under various mass transport Conditions[J]. Water, Air, and Soil Pollution, 2013, 224(12): 1-9.
|
[44] |
Lu Q, Gui L, Gillham R W.Effects of nitrate on trichloroethylene degradation by granular iron[J]. Earth Science Frontiers, 2005, 12(Suppl.1): 176-183.
|
|
[Lu Q, Gui L, Gillham R W.硝酸根对颗粒状铁降解三氯乙烯的影响[J]. 地学前缘, 2005, 12(增刊1): 176-183.]
|
[45] |
Luo H P, Jin S, Fallgren P H, et al.Prevention of iron passivation and enhancement of nitrate reduction by electron supplementation[J]. Chemical Engineering Journal, 2010, 160(1):185-189.
|
[46] |
Weber A, Ruhl A S, Amos R T.Investigating dominant processes in ZVI permeable reactive barriers using reactive transport modeling[J]. Journal of Contaminant Hydrology, 2013, 151: 68-82.
|
[47] |
Liu Yulong.Studies on Removal of Mixed Plume Formed by Benzene, Toluene and Chlorinated Ethylenes in Groundwater[D]. Beijing: China University of Geosciences, 2010.
|
|
[刘玉龙. 去除地下水中苯、甲苯和氯代乙烯烃混合污染羽的实验研究[D]. 北京: 中国地质大学(北京),2010. ]
|
[48] |
Reardon E J.Anaerobic corrosion of granular iron: Measurement and interpretation of hydrogen evolution rates[J]. Environmental Science & Technology, 1995, 29(12): 2 936-2 945.
|
[49] |
Johnson T L, Fish W, Gorby Y A, et al.Degradation of carbon tetrachloride by iron metal: Complexation effects on the oxide surface[J]. Journal of Contaminant Hydrology, 1998, 29(4): 379-398.
|
[50] |
Lipczynska-Kochany E, Harms S, Milburn R, et al.Degradation of carbon tetrachloride in the presence of iron and sulphur containing compounds[J]. Chemosphere, 1994, 29(7): 1 477-1 489.
|
[51] |
Deng B, Hu S, Burris D R.Effect of Iron Corrosion Inhibitors on Trichloroethylene Reduction[M]. Columbus: Battelle Press, 1998.
|
[52] |
Kohn T, Lynn Roberts A.The effect of silica on the degradation of organohalides in granular iron columns[J]. Journal of Contaminant Hydrology, 2006, 83(1): 70-88.
|
[53] |
Li Z, Willms C, Alley J, et al. A shift in pathway of iron-mediated perchloroethylene reduction in the presence of sorbed surfactant—A column study[J]. Water Research, 2006, 40(20): 3811-3819.
|
[54] |
Dries J, Bastiaens L, Springael D, et al.Competition for sorption and degradation of chlorinated ethenes in batch zero-valent iron systems[J]. Environmental Science & Technology, 2004, 38(10): 2 879-2 884.
|
[55] |
Clark C J, Raob P S C, Annable M D. Degradation of perchloroethylene in cosolvent solutions by zero-valent iron[J]. Journal of Hazardous Materials, 2003, 96(1): 65-78.
|
[56] |
Chen Liang.Microbial Passivation Analysis and Electrochemical Depassivation of Iron in ZVI PRB[D]. Beijing: China University of Geosciences, 2012.
|
|
[陈亮. 零价铁渗透反应格栅中铁的微生物钝化效应及电活化技术[D].北京:中国地质大学(北京), 2012.]
|
[57] |
van Nooten T, Lieben F, Dries J, et al. Impact of microbial activities on the mineralogy and performance of column-scale permeable reactive iron barriers operated under two different redox conditions[J].Environmental Science & Technology, 2007, 41(16): 5 724-5 730.
|
[58] |
Muchitsch N, Van Nooten T, Bastiaens L,et al.Integrated evaluation of the performance of a more than seven year old permeable reactive barrier at a site contaminated with Chlorinated Aliphatic Hydrocarbons (CAHs)[J]. Journal of Contaminant Hydrology, 2011, 126(3): 258-270.
|
[59] |
Wilkin R T, Puls R W, Sewell G W.Long-term performance of permeable reactive barriers using zero-valent iron: Geochemical and microbiological effects[J]. Ground Water, 2003, 41(4): 493-503.
|
[60] |
Johnson R L, Thoms R B, Johnson R O, et al.Mineral precipitation upgradient from a zero-valent iron permeable reactive barrier[J]. Ground Water Monitoring and Remediation, 2008, 28(3): 56-64.
|
[61] |
Chen L, Jin S, Fallgren P H, et al.Passivation of ZVI by denitrifying bacteria and the impact on trichloroethene reduction in groundwater[J]. Water Science & Technology, 2013, 67(6): 1 254-1 259.
|
[62] |
Blowes D W, Ptacek C J, Benner S G, et al.Treatment of inorganic contaminants using permeable reactive barriers[J]. Journal of Contaminant Hydrology, 2000, 45(1): 123-137.
|
[63] |
Bilardi S, Amos R T, Blowes D W, et al.Reactive transport modeling of ZVI column experiments for nickel remediation[J]. Groundwater Monitoring & Remediation, 2013, 33(1): 97-104.
|
[64] |
Su C, Puls R W.Arsenate and arsenite removal by zero valent iron: Kinetics, redox transformation, and implications for in situ groundwater remediation[J]. Environmental Science & Technology, 2001, 35(7): 1 487-1 492.
|
[65] |
Su C, Puls R W.Significance of iron(II, III) hydroxycarbonate green rust in arsenic remediation using zero valent iron in laboratory column tests[J]. Environmental Science & Technology, 2004, 38(19): 5 224-5 231.
|
[66] |
Wilkin R T, McNeil M S. Laboratory evaluation of zero-valent iron to treat water impacted by acid mine drainage[J]. Chemosphere, 2013, 53(7): 715-725.
|
[67] |
Sun H, Wang L, Zhang R, et al.Treatment of groundwater polluted by arsenic compounds by zero valent iron[J]. Journal of Hazardous Materials, 2006, 129(1/3): 297-303.
|
[68] |
Yang J E, Kim J S, Ok Y S, et al. Mechanistic evidence and efficiency of the Cr(VI) reduction in water by different sources of zerovalent irons[J]. Water Science & Technology,2007, 55(1/2): 197-202.
|
[69] |
Li X Q, Zhang W X.Sequestration of metal cations with zerovalent iron nanoparticles a study with high resolution X-ray photoelectron spectroscopy (HR-XPS)[J]. The Journal of Physical Chemistry C, 2007, 111(19): 6 939-6 946.
|
[70] |
Ludwig R D, Smyth D J A, Blowes D W, et al. Treatment of arsenic, heavy metals, and acidity using a mixed ZVI-compost PRB[J]. Environmental Science & Technology, 2009, 43(6): 1 970-1 976.
|
[71] |
Cheng I F, Muftikian R, Fernando Q, et al.Reduction of nitrate to ammonia by zero-valent iron[J]. Chemosphere, 1997, 35(11): 2 689-2 695.
|
[72] |
Liao C H, Kang S F, Hsu Y W.Zero-valent iron reduction of nitrate in the presence of ultraviolet light, organic matter and hydrogen peroxide[J]. Water Research, 2003, 37(17): 4 109-4 118.
|
[73] |
Suzuki T, Moribe M, Oyama Y, et al.Mechanism of nitrate reduction by zero-valent iron: Equilibrium and kinetics studies[J]. Chemical Engineering Journal, 2012, 183: 271-277.
|
[74] |
Bhatnagar A, Sillanp M.A review of emerging adsorbents for nitrate removal from water[J]. Chemical Engineering Journal, 2011, 168(2): 493-504.
|
[75] |
Gandhi S, Oh B T, Schnoor J L, et al.Degradation of TCE, Cr (VI), sulfate, and nitrate mixtures by granular iron in flow-through columns under different microbial conditions[J]. Water Research, 2002, 36(8): 1 973-1 982.
|
[76] |
Van Nooten T, Springael D, Bastiaens L.Microbial community characterization in a pilot-scale permeable reactive iron barrier[J]. Environmental Engineering Science, 2010, 27(3): 287-292.
|
[77] |
Jeen S W, Gillham R W, Przepiora A.Predictions of long-term performance of granular iron permeable reactive barriers: Field-scale evaluation[J]. Journal of Contaminant Hydrology, 2011, 123(1): 50-64.
|
[78] |
Yin W, Wu J, Li P, et al.Experimental study of zero-valent iron induced nitrobenzene reduction in groundwater: The effects of pH, iron dosage, oxygen and common dissolved anions[J]. Chemical Engineering Journal, 2012, 184: 198-204.
|
[79] |
Fu F, Dionysiou D D, Liu H.The use of zero-valent iron for groundwater remediation and wastewater treatment: A review[J]. Journal of Hazardous Materials, 2014, 267: 194-205.
|
[80] |
Yin W, Wu J, Huang W, et al.Enhanced nitrobenzene removal and column longevity by coupled abiotic and biotic processes in zero-valent iron column[J]. Chemical Engineering Journal, 2015, 259: 417-423.
|
[81] |
Epolito W J, Yang H, Bottomley L A, et al.Kinetics of zero-valent iron reductive transformation of the anthraquinone dye reactive blue 4[J]. Journal of Hazardous Materials, 2008, 160(2): 594-600.
|
[82] |
Scherer M M, Richter S, Valentine R L, et al.Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up[J]. Critical Reviews in Microbiology, 2000, 26(4): 221-264.
|
[83] |
Arora M, Snape I, Stevens G W.The effect of temperature on toluene sorption by granular activated carbon and its use in permeable reactive barriers in cold regions[J]. Cold Regions Science and Technology, 2011, 66(1): 12-16.
|
[84] |
Morris E A, Kirk D W, Jia C Q, et al.Roles of sulfuric acid in elemental mercury removal by activated carbon and sulfur-impregnated activated carbon[J]. Environmental Science & Technology, 2012, 46(14): 7 905-7 912.
|
[85] |
Bortone I, Di Nardo A, Di Natale M, et al.Remediation of an aquifer polluted with dissolved tetrachloroethylene by an array of wells filled with activated carbon[J]. Journal of Hazardous Materials, 2013, 260: 914-920.
|
[86] |
Vignola R, Bagatin R, De Folly D’Auris A, et al. Zeolites in a Permeable Reactive Barrier (PRB): One year of field experience in a refinery groundwater—Part 1: The performances[J]. Chemical Engineering Journal, 2011, 178: 204-209.
|
[87] |
Vignola R, Bagatin R, De Folly D’Auris A, et al. Zeolites in a Permeable Reactive Barrier (PRB): One-year of field experience in a refinery groundwater. Part 2: Zeolite characterization[J]. Chemical Engineering Journal, 2011, 178: 210-216.
|
[88] |
Hou G, Liu F, Liu M, et al.Performance of a permeable reactive barrier for in situ removal of ammonium in groundwater[J]. Water Science & Technology: Water Supply, 2014, 14(4): 585-592.
|
[89] |
Li S, Huang G, Kong X, et al.Ammonium removal from groundwater using a zeolite permeable reactive barrier: A pilot-scale demonstration[J]. Water Science & Technology, 2014, 70(9): 1 540-1 547.
|
[90] |
Misaelides P.Application of natural zeolites in environmental remediation: A short review[J]. Microporous and Mesoporous Materials, 2011, 144(1): 15-18.
|
[91] |
Farhadian M, Vachelard C, Duchez D, et al.In situ bioremediation of monoaromatic pollutants in groundwater: A review[J]. Bioresource Technology, 2008, 99(13): 5 296-5 308.
|
[92] |
Johnson D B, Hallberg K B.Acid mine drainage remediation options: A review[J]. Science of the Total Environment, 2005, 338(1): 3-14.
|
[93] |
Benner S G, Blowes D W, Ptacek C J, et al.Rates of sulfate reduction and metal sulfide precipitation in a permeable reactive barrier[J]. Applied Geochemistry, 2002, 17(3): 301-320.
|
[94] |
Robertson W D, Vogan J L, Lombardo P S.Nitrate removal rates in a 15-year-old permeable reactive barrier treating septic system nitrate[J]. Groundwater Monitoring and Remediation, 2008, 28(3): 65-72.
|
[95] |
Lojkasek-Lima P, Aravena R, Shouakar-Stash O, et al.Evaluating TCE abiotic and biotic degradation pathways in a permeable reactive barrier using compound specific isotope analysis[J]. Groundwater Monitoring and Remediation, 2012, 32(4): 53-62.
|
[96] |
Xin B P, Wu C H, Wu C H, et al.Bioaugmented remediation of high concentration BTEX-contaminated groundwater by permeable reactive barrier with immobilized bead[J].Journal of Hazardous Materials, 2013, 244:765-772.
|
[97] |
Xie Li, Liu Fei, Liu Yulong.Improving property of filler in oxygen-releasing permeable reactive barrier[J]. Environmental Science & Technology, 2010, 33(2): 44-48.
|
|
[谢李, 刘菲, 刘玉龙. 释氧渗透反应格栅填料的改进研究[J]. 环境科学与技术, 2010, 33(2): 44-48.]
|
[98] |
Kong Xiangke, Ma Jianfei, Yang Yingzhao, et al.Laboratory column study for evaluating a bio-chemical permeable reactive barrier to remove ammonium from groundwater[J]. Environmental Science & Technology, 2012, 35(12): 1-5.
|
|
[孔祥科, 马剑飞, 杨应钊, 等. 渗透反应格栅去除地下水中铵的化学生物联合柱研究[J]. 环境科学与技术, 2012, 35(12): 1-5.]
|
[99] |
Kong Xiangke, Zhang Ying, Bi Erping.Optimization of oxygen-releasing materials and pH regulation in groundwater remediation system[J]. Chinese Journal of Environmental Engineering, 2012, 6(9): 2 935-2 940.
|
|
[孔祥科, 张英, 毕二平. 地下水修复系统中释氧材料的改进及 pH 调控[J]. 环境工程学报, 2012, 6(9): 2 935-2 940.]
|
[100] |
Yang Yingzhao, Liu Fei, Kong Xiangke, et al.Transformation and existing from of ammonia-N in a multi-media permeable reactive barrier[J]. Chinese Journal of Environmental Engineering, 2013, 7(8): 2 931-2 936.
|
|
[杨应钊, 刘菲, 孔祥科, 等. 多介质渗透反应格栅中氨氮的转化与存在形态[J]. 环境工程学报, 2013, 7(8): 2 931-2 936.]
|
[101] |
Borden R C, Goin R T, Kao C M.Control of BTEX migration using a biologically enhanced permeable barrier[J]. Groundwater Monitoring & Remediation, 1997, 17(1): 70-80.
|
[102] |
He Y T, Wilson J T, Wilkin R T.Transformation of reactive iron minerals in a permeable reactive barrier (biowall) used to treat TCE in groundwater[J]. Environmental Science & Technology, 2008, 42(17): 6 690-6 696.
|
[103] |
Elliott D W, Zhang W.Field assessment of nanoscale bimetallic particles for groundwater treatment[J]. Environmental Science & Technology, 2001, 35(24): 4 922-4 926.
|
[104] |
Nanotechnology Workgroup.U.S. Environmental Protection Agency Nanotechnology White Paper[C]. Washington DC: U.S. Environmental Protection Agency,2007.
|
[105] |
Li Yunchun, Wang Xianxiang, Zhao Maojun.Influence factors on the in-situ remediation of halogenated organic compounds by nanoscale zero valent iron[J].Advances in Earth Science, 2013, 28(10): 1 106-1 118.
|
|
[李云春, 王显祥, 赵茂俊. 纳米零价铁原位修复有机卤化物的影响因素[J]. 地球科学进展, 2013, 28(10): 1 106-1 118.]
|
[106] |
Shu H Y, Chang M C, Yu H H, et al.Reduction of an azo dye Acid Black 24 solution using synthesized nanoscale zerovalent iron particles[J]. Journal of Colloid and Interface Science, 2007, 314(1): 89-97.
|
[107] |
Lin Y T, Weng C H, Chen F Y.Effective removal of AB24 dye by nano/micro-size zero-valent iron[J]. Separation and Purification Technology, 2008, 64(1): 26-30.
|
[108] |
Johnson R L, Nurmi J T, O’Brien Johnson, et al. Field-scale transport and transformation of carboxymethylcellulose-stabilized nano zero-valent iron[J]. Environmental Science & Technology, 2013, 47(3): 1 573-1 580.
|
[109] |
Kanel S R, Choi H.Transport characteristics of surface-modified nanoscale zero-valent iron in porous media[J]. Water Science & Technology, 2007, 55(1): 157-162.
|
[110] |
Chang D, Chen T, Liu H, et al.A new approach to prepare ZVI and its application in removal of Cr (VI) from aqueous solution[J]. Chemical Engineering Journal, 2014, 244: 264-272.
|
[111] |
Comba S, Sethi R.Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum[J]. Water Research, 2009, 43(15): 3 717-3 726.
|
[112] |
Comba S, Dalmazzo D, Santagata E.Rheological characterization of xanthan suspensions of nanoscale iron for injection in porous media[J]. Journal of Hazardous Materials, 2011, 185(2): 598-605.
|
[113] |
Lee C, Kim J Y, Lee W I, et al.Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli[J]. Environmental Science & Technology, 2008, 42(13): 4 927-4 933.
|
[114] |
Chen J, Xiu Z, Lowry G V, et al.Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron[J]. Water Research, 2011, 45(5): 1 995-2 001.
|
[115] |
SaccM L, Fajardo C, Costa G, et al. Integrating classical and molecular approaches to evaluate the impact of nanosized zero-valent iron (nZVI) on soil organisms[J]. Chemosphere, 2014, 104: 184-189.
|
[116] |
Truex M J, Vermeul V R, Mendoza D P, et al.Injection of Zero-Valent Iron into an unconfined aquifer using shear—Thinning fluids[J].Groundwater Monitoring and Remediation, 2011, 31(1): 50-58.
|
[117] |
Velimirovic M, Simons Q, Bastiaens L.Guar gum coupled microscale ZVI for in situ treatment of CAHs: Continuous-flow column study[J]. Journal of Hazardous Materials, 2014, 265: 20-29.
|
[118] |
Comba S, Braun J.An empirical model to predict the distribution of iron micro-particles around an injection well in a sandy aquifer[J]. Journal of Contaminant Hydrology, 2012, 132: 1-11.
|