地球科学进展 ›› 2015, Vol. 30 ›› Issue (4): 433 -444. doi: 10.1167/j.issn.1001-8166.2015.04.0433

上一篇    下一篇

海洋钙同位素分馏机制及其古海洋学应用
吴能友 1( ), 张必东 1, 2, *( ), 邬黛黛 1   
  1. 1 中国科学院天然气水合物重点实验室,中国科学院广州能源研究所,广州 510640
    2 中国科学院大学,北京100049
  • 收稿日期:2014-10-31 修回日期:2015-03-09 出版日期:2015-04-20
  • 通讯作者: 张必东 E-mail:wuny@ms.giec.ac.cn;bdzhang@mail.ustc.edu.cn
  • 基金资助:
    国家自然科学基金项目“南海北部冷泉区AOM驱动的硫早期成岩循环作用及其对甲烷渗漏环境识别研究”(编号:41273022);中国科学院广州能源研究所所长创新基金培育专项“南海北部天然气水合物成藏的实验与表征研究”(编号:y307p51001)资助

Fractionation Mechanism and Paleoceanographic Applications of Calcium Isotopes in Marine Settings

Nengyou Wu 1( ), Bidong Zhang 1, 2( ), Daidai Wu 1   

  1. 1.Key Laboratory of Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640 China
    2. University of Chinese Academy of Sciences, Beijing, 100049 China
  • Received:2014-10-31 Revised:2015-03-09 Online:2015-04-20 Published:2015-04-20

钙在海洋中是离子浓度仅次于钠和镁的金属元素,在海洋生物过程及矿物形成中都占据重要的地位。随着同位素分析仪器精度的提高,钙同位素等非常规稳定同位素的研究逐渐成为地球化学的热[JP2]门,钙同位素在海洋环境中的分馏机制及其在古海洋学中的应用研究不断完善。系统介绍了钙同位素高精度分析的方法和原理,海洋环境中无机成因和有机成因2种钙同位素分馏的机制和应用;通过大量的文献调研综述了钙同位素地球化学研究在古海洋参数恢复上的应用。通过有孔虫Globigerinoides sacculifer的钙同位素具有对温度敏感、温感公式简单、后生成岩作用对其影响小和分析材料完整易得等优点,并同其他传统地质温度计联用,为古海洋研究提供精确的海洋表面温度(Sea Surface Temperature,SST);利用钙同位素值温度相关性较小的钙质壳体来恢复古海洋钙通量;利用无机成因碳酸盐岩盖帽的钙同位素恢复海水CO2-3浓度和研究甲烷渗漏对古海洋环境的影响。

The concentration of calcium is only below sodium and magnesium among metalions, which plays a crucial role in biological processes and the formation of minerals. As analytic accuracy has been increasing, studies of calcium isotopes now become hot focus. Fractionation mechanism and paleoceanographic applications of calcium isotopes in marine settings are perfected with time. Globigerinoides sacculifer is the most promising proxy allied with other proxies of sea surface temperature because its calcium fractionation being sensitive to temperature, with simple formulas and resistant to diagenesis and it is also accessible to test. Those who are not sensitive to temperature in fractionation can be used to recover calcium budget. Inorganic calcium carbonates are promising to evaluate the influences that seepage of methane may exert on paleo-climate.

中图分类号: 

表 1 各常用标准之间钙同位素丰度千分差(修改自Gussone [ 14 ])
Table 1 Conversion of Ca-isotope data between the common standards(modified from reference[14])
图1 速率控制端元混合模型数据图与实测数据比较(修改自文献[19])
Fig.1 Rate dependent end member mixing model fits to measured data (modified from reference[19])
图2 珊瑚的Ca 2+运输通道(修改自文献 [ 19 ])
Fig.2 Ca 2+ pathways through a coral (modified from reference [ 19 ])
表 2 Bimodel模型计算参数
Table 2 Applied variables for Bimodel
图3 几种主要钙同位素分馏值温度方程
Fig.3 Calcium isotopes fractionation formulas versus temperature
表3 G.sacculifer钙同位素测温方程
Table 3 Temperature equations of calcium isotopes fractionation of G.sacculifer
[1] De Laeter J R, Bohlke J K, De Bievre P, et al. Atomic weights of the elements: Review 2000-(IUPAC technical report)[J]. Pure Applied Chemistry, 2003, 75(6): 683-800.
[2] Russell W A, Papanastassiou D A, Tombrello T A.Ca Isotope fractionation on Earth and other solar-system materials[J]. Geochimica et Cosmochimica Acta, 1978, 42(8): 1 075-1 090.
[3] Skulan J, Depaolo D J, Owens T L.Biological control of calcium isotopic abundances in the global calcium cycle[J]. Geochimica et Cosmochimica Acta, 1997, 61(12): 2 505-2 510.
[4] Zhu P, Macdougall J D.Calcium isotopes in the marine environment and the oceanic calcium cycle[J]. Geochimica et Cosmochimica Acta, 1998, 62(10): 1 691-1 698.
[5] Heuser A, Eisenhauer A, Gussone N, et al.Measurement of calcium isotopes (delta Ca-44) using a multicollector TIMS technique[J]. International Journal of Mass Spectrometry,2002, 220(3): 385-397.
[6] Sime N G, De La Rocha C L, Galy A. Negligible temperature dependence of calcium isotope fractionation in 12 species of planktonic foraminifera[J]. Earth Planetary Sciences Letters, 2005, 232(1/2): 51-66.
[7] Kasemann S A, Schmidt D N, Pearson P N, et al.Biological and ecological insights into Ca isotopes in planktic foraminifers as a palaeotemperature proxy[J]. Earth Planetary Sciences Letters, 2008, 271(1/4): 292-302.
[8] Chen Ping, Fang Nianqiao, Hu Chaoyong.Glacial-interglacial variations of δ44Ca recordedby planktonic foraminifera[J]. Journal of Anhui University of Science and Technology(Natural Science), 2006, 26(4):11-16.
[陈萍,方念乔,胡超涌. 有孔虫壳体δ44Ca的古海洋学意义[J].安徽理工大学学报:自然科学版,2006,26(4):11-16.]
[9] Eisenhauer A, Gussone N, Dietzel M, et al.Kinetic effects on calcium isotope (delta Ca-44) fractionation in calcium carbonate[J]. Geochimica et Cosmochimica Acta, 2002, 66(15A): A211-A211.
[10] Schmitt A D, Bracke G, Stille P, et al.The calcium isotope composition of modern seawater determined by thermal ionisation mass spectrometry[J]. Geostandard Newslett, 2001, 25(2/3): 267-275.
[11] Gussone N, Bohm F, Eisenhauer A, et al.Calcium isotope fractionation in calcite and aragonite[J]. Geochimica et Cosmochimica Acta, 2005, 69(18): 4 485-4 494.
[12] Gussone N, Eisenhauer A, Tiedemann R, et al.Reconstruction of Caribbean sea surface temperature and salinity fluctuations in response to the pliocene closure of the Central American Gateway and radiative forcing, using delta Ca-44/40, delta O-18 and Mg/Ca ratios[J]. Earth Planetary Sciences Letters, 2004, 227(3/4): 201-214.
[13] Griffith E M, Paytan A, Bullen T D.Evidence for a dynamic marine calcium cycle during the past 30 million years from a record of Calcium isotopes in marine barite[J]. Geochimica et Cosmochimica Acta, 2008, 72(12): A329-A329.
[14] Gussone N, H Nisch B, Heuser A, et al. A critical evaluation of calcium isotope ratios in tests of planktonic foraminifers[J]. Geochimica et Cosmochimica Acta, 2009, 73(24): 7 241-7 255.
[15] Marriott C S, Henderson G M, Crompton R, et al.Effect of mineralogy, salinity, and temperature on Li/Ca and Li isotope composition of calcium carbonate[J]. Chemical Geology, 2004, 212(1/2): 5-15.
[16] Bullen T D, Bailey S W.Identifying calcium sources at an acid deposition-impacted spruce forest: A strontium isotope, alkaline earth element multi-tracer approach[J]. Biogeochemistry, 2005, 74(1): 63-99.
[17] Schiller M, Paton C, Bizzarro M.Calcium isotope measurement by combined HR-MC-ICPMS and TIMS[J]. Journal of Analytical Atomic Spectrometry, 2012, 27(1): 38-49.
[18] Lemarchand D, Wasserburg G T, Papanastassiou D A.Rate-controlled calcium isotope fractionation in synthetic calcite[J]. Geochimica et Cosmochimica Acta, 2004, 68(22): 4 665-4 678.
[19] Böhm F, Gussone N, Eisenhauer A,et al.Calcium isotope fractionation in modern scleractinian corals[J]. Geochimica et Cosmochimica Acta, 2006, 70(17): 4 452-4 462.
[20] Fantle M S, Depaolo D J.Sr isotopes and pore fluid chemistry in carbonate sediment of the Ontong Java Plateau: Calcite recrystallization rates and evidence for a rapid rise in seawater Mg over the last 10 million years[J].Geochimica et Cosmochimica Acta, 2006, 70(15): 3 883-3 904.
[21] Tang J, Dietzel M, Kohler S, et al.Sr2+/Ca2+ and 44Ca/40Ca fractionation during inorganic calcite formation: II. Calcium isotopes[J]. Geochimica et Cosmochimica Acta, 2008, 72(15): 3 733-3 745.
[22] Tang J, Niedermayr A, Kohler S, et al.Sr2+/Ca2+ and 44Ca/40Ca fractionation during inorganic calcite formation: III. Impact of salinity/ionic strength[J]. Geochimica et Cosmochimica Acta, 2011, 77(100): 432-443.
[23] Fantle M S, Depaolo D J.Ca isotopes in carbonate sediment and pore fluid from ODP Site 807A: The Ca2+(aq)-calcite equilibrium fractionation factor and calcite recrystallization rates in Pleistocene sediments[J]. Geochimica et Cosmochimica Acta, 2007, 71(10): 2 524-2 546.
[24] DePaolo D J. Surface kinetic model for isotopic and trace element fractionation during precipitation of calcite from aqueous solutions[J].Geochimica et Cosmochimica Acta,2011,75(4):1 039-1 056.
[25] Nielsen L C, DePaolo D J, DeYoreo J J. Self-consistent ion-by-ion growth model for kinetic isotopic fractionation during calcite precipitation[J]. Geochimica et Cosmochimica Acta, 2012, 86: 166-181.
[26] Harouaka K, Eisenhauer A, Fantle M S.Experimental investigation of Ca isotopic fractionation during abiotic gypsum precipitation[J]. Geochimica et Cosmochimica Acta, 2014, 129: 157-176.
[27] Gussone N, Langer G, Thoms S, et al.Cellular calcium pathways and isotope fractionation in Emiliania huxleyi[J]. Geology, 2006, 34(8): 625-628.
[28] Gussone N, Eisenhauer A, Heuser A, et al.Model for kinetic effects on calcium isotope fractionation (delta Ca-44) in inorganic aragonite and cultured planktonic foraminifera[J]. Geochimica et Cosmochimica Acta, 2003, 67(7): 1 375-1 382.
[29] Kisakurek B, Eisenhauer A, Bohm F, et al.Controls on calcium isotope fractionation in cultured planktic foraminifera, Globigerinoides ruber and Globigerinella siphonifera[J]. Geochimica et Cosmochimica Acta, 2011, 75(2): 427-443.
[30] Griffith E M, Paytan A, Kozdon R, et al.Influences on the fractionation of calcium isotopes in planktonic foraminifera[J]. Earth Planet Science Letters, 2008, 268(1/2): 124-136.
[31] Erez J.The source of ions for biomineralization in foraminifera and their implications for paleoceanographic proxies[J]. Biomineralization, 2003, 54: 115-149.
[32] Elderfield H, Bertram C J, Erez J.Biomineralization model for the incorporation of trace elements into foraminiferal calcium carbonate[J]. Earth Planet Science Letters, 1996, 142(3/4): 409-423.
[33] Nägler T F, Eisenhauer A, Muller A, et al.The δ44Ca-temperature calibration on fossil and cultured Globigerinoides sacculifer: New tool for reconstruction of past sea surface temperatures[J]. Geochemistry, Geophysics, Geosystems, 2000, 1(9),doi:10.1029/2000GC000091.
[34] Hippler D, Eisenhauer A, Nagler T F.Tropical Atlantic SST history inferred from Ca isotope thermometry over the last 140 ka[J]. Geochimica et Cosmochimica Acta, 2006, 70(1): 90-100.
[35] Anderson O R, Faber W W.An estimation of Calcium-carbonate deposition rate in a planktonic foraminifer Globigerinoides-sacculifer using Ca-45 as a tracer-a recommended procedure for improved accuracy[J]. Journal of Foraminiferal Research, 1984, 14(4): 303-308.
[36] Hemleben C, Spindler M, Breitinger I, et al.Morphological and physiological-responses of Globigerinoides-sacculifer (Brady) under varying laboratory conditions[J]. Marine Micropaleontology, 1987, 12(4): 305-324.
[37] Gussone N, Honisch B, Heuser A, et al.A critical evaluation of calcium isotope ratios in tests of planktonic foraminifers[J]. Geochimica et Cosmochimica Acta, 2009, 73(24): 7 241-7 255.
[38] Hastings D W, Russell A D, Emerson S R.Foraminiferal magnesium in Globeriginoides sacculifer as a paleotemperature proxy[J]. Paleoceanography, 1998, 13(2): 161-169.
[39] Wolff T, Mulitza S, Arz H, et al.Oxygen isotopes versus CLIMAP (18 ka) temperatures: A comparison from the tropical Atlantic[J]. Geology, 1998, 26(8): 675-678.
[40] Ruhlemann C, Mulitza S, Muller P J, et al.Warming of the tropical Atlantic Ocean and slowdown of thermohaline circulation during the last deglaciation[J]. Nature, 1999, 402(6 761): 511-514.
[41] Farkaš J, Böhm F, Wallmann K, et al.Calcium isotope record of Phanerozoic oceans: Implications for chemical evolution of seawater and its causative mechanisms[J]. Geochimica et Cosmochimica Acta, 2007, 71(21): 5 117-5 134.
[42] Farkaš J, Buhl D, Blenkinsop J, et al.Evolution of the oceanic calcium cycle during the late Mesozoic: Evidence fromδ44/40Ca of marine skeletal carbonates[J]. Earth and Planetary Science Letters, 2007, 253(1/2): 96-111.
[43] Fantle M S, DePaolo D J. Variations in the marine Ca cycle over the past 20 million years[J]. Earth and Planetary Science Letters, 2007, 237(1/2): 102-117.
[44] Sandberg P A.An oscillating trend In phanerozoic non-skeletal carbonate mineralogy[J]. Nature, 1983, 305(5929): 19-22.
[45] Kasemann S A, Hawkesworth C J, Prave A R, et al.Boron and calcium isotope composition in Neoproterozoic carbonate rocks from Namibia: Evidence for extreme environmental change[J]. Earth Planet Science Letters, 2005, 231(1/2): 73-86.
[46] Kennedy M J, Christie-Blick N, Sohl L E.Are Proterozoic cap carbonates and isotopic excursions a record of gas hydrate destabilization following Earth’s coldest intervals?[J]. Geology, 2001, 29(5): 443-446.
[47] Chen Duofu, Chen Xianpei, Chen Guangqian.Geology and geochemistry of cold seepage and venting-related carbonates[J]. Acta Sedimentologica Sinica, 2002, 20(1):34-40.
[陈多福,陈先沛,陈光谦. 冷泉流体沉积碳酸盐岩的地质地球化学特征[J].沉积学报,2002,20(1):34-40.]
[48] Wu Zijun, Ren Dezhang, Zhou Huaiyang.Anaerobic Oxidation of Methane (AOM) and its influence on inorganic sulfur cycle in marine sediments[J]. Advances in Earth Science, 2013, 28(7):765-773.
[吴自军,任德章,周怀阳.海洋沉积物甲烷厌氧氧化作用(AOM)及其对无机硫循环的影响[J].地球科学进展,2013,28(7):765-773.]
[49] Huang Keke, Huang Sijing, Lan Yefang, et al.Review of the carbon isotope of early triassic carbonates[J]. Advances in Earth Science, 2013, 28(3):357-365.
[黄可可,黄思静,兰叶芳,等.早三叠世海相碳酸盐碳同位素研究进展[J].地球科学进展,2013,28(3):357-365.]
[50] Feng Dong, Chen Duofu, Liu Qian.Formation of late Neoproterozoic cap carbonates and termination mechanism of “Snowball Earth”[J]. Acta Sedimentologica Sinica, 2006, 24(2): 235-241.
[冯东,陈多福,刘芊. 新元古代晚期盖帽碳酸盐岩的成因与“雪球地球”的终结机制[J].沉积学报,2006,24(2):235-241.]
[51] Chappellaz J, Blunier T, Raynaud D, et al.Synchronous changes in atmospheric CH4 and greenland climate between 40-kyr and 8-Kyr Bp[J]. Nature, 1993, 366(6 454): 443-445.
[52] Henderson G M, Chu N C, Bayon G, et al.δ(44/42)Ca in gas hydrates, porewaters and authigenic carbonates from Niger Delta sediments[J]. Geochimica et Cosmochimica Acta,2006,70(18):A244-A244.
[53] Wang S H, Yan W, Magalhaes V H, et al.Factors influencing methane-derived authigenic carbonate formation at cold seep from southwestern Dongsha area in the northern South China Sea[J]. Environmental Earth Sciences, 2014, 71(5): 2 087-2 094.
[54] Teichert B M A, Gussone N, Torres M E. Controls on calcium isotope fractionation in sedimentary porewaters[J]. Earth and Planetary Science Letters, 2009, 279(3/4): 373-382.
[1] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[2] 张富贵, 周亚龙, 孙忠军, 方慧, 杨志斌, 祝有海. 中国多年冻土区天然气水合物地球化学勘探技术研究进展[J]. 地球科学进展, 2021, 36(3): 276-287.
[3] 郭卫东,王超,李炎,瞿理印,郎目晨,邓永彬,梁清隆. 水环境中溶解有机质的光谱表征:从流域到深海[J]. 地球科学进展, 2020, 35(9): 933-947.
[4] 赖正,苏妮,吴舟扬,连尔刚,杨承帆,李芳亮,杨守业. 流域风化过程稳定锶同位素的分馏与示踪[J]. 地球科学进展, 2020, 35(7): 691-703.
[5] 余小灿,刘成林,王春连. 锂同位素地球化学在大陆地热体系研究中的应用[J]. 地球科学进展, 2020, 35(3): 246-258.
[6] 赵振洋, 李双建, 王根厚. 中下扬子北缘中二叠统孤峰组层状硅质岩沉积环境、成因及硅质来源探讨[J]. 地球科学进展, 2020, 35(2): 137-153.
[7] 朱艳宸,李丽,王鹏,贺娟,贾国东. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 2020, 35(2): 167-179.
[8] 阮雅青,张瑞峰. 海水中铜的生物地球化学研究进展[J]. 地球科学进展, 2020, 35(12): 1243-1255.
[9] 李薇,张海东,戴国华,刘小驰. 2020年度地球化学学科基金项目评审与资助成果分析[J]. 地球科学进展, 2020, 35(11): 1154-1162.
[10] 汪智军,殷建军,蒲俊兵,袁道先. 钙华生物沉积作用研究进展与展望[J]. 地球科学进展, 2019, 34(6): 606-617.
[11] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[12] 刘洋,王文龙,滕学建,郭硕,滕飞,何鹏,田健,段霄龙. 内蒙古狼山地区早二叠世晚期花岗闪长岩:地球化学、年代学、 Hf同位素特征及其地质意义[J]. 地球科学进展, 2019, 34(4): 366-381.
[13] 汪品先. 深水珊瑚林[J]. 地球科学进展, 2019, 34(12): 1222-1233.
[14] 党皓文,马小林,杨策,金海燕,翦知湣. 重建高分辨率深海环境变化:冷水竹节珊瑚无机地球化学方法[J]. 地球科学进展, 2019, 34(12): 1262-1272.
[15] 熊巨华,刘磊,赵学钦. 2019年度地球化学学科基金项目评审与成果分析[J]. 地球科学进展, 2019, 34(11): 1179-1184.
阅读次数
全文


摘要