地球科学进展 ›› 2007, Vol. 22 ›› Issue (11): 1191 -1207. doi: 10.11867/j.issn.1001-8166.2007.11.1191

干旱气候变化与可持续发展 上一篇    

在过去40年里出现的新趋势——北美持续旱段
Pavel Ya. Groisman 1,Richard W. Knight 2   
  1. 1.美国国家气候数据中心,美国 北卡罗莱纳州 艾西维尔市 28801;2.STG, Inc. 美国 北卡罗莱纳州 艾西维尔市 28801
  • 收稿日期:2007-09-15 修回日期:2007-01-01 出版日期:2007-11-10
  • 通讯作者: Pavel Ya. Groisman, Ph D.E-mail: pasha.Groisman@noaa.gov E-mail:pasha.Groisman@noaa.gov

Prolonged Dry Episodes over North America: New Tendencies Emerging During the Last 40 Years

Pavel Ya. Groisman 1,Richard W. Knight 2   

  1. 1.UCAR Project Scientist at National Climatic Data Center, Asheville, North Carolina, USA; 2.STG, Inc., Asheville, North Carolina, USA
  • Received:2007-09-15 Revised:2007-01-01 Online:2007-11-10 Published:2007-11-10

在普遍增温的背景下,强降水过程中降水量不平衡增长(扩大植物生长期,加剧蒸腾作用)及降水总量的微弱改变将增加具有潜在威胁的极端气候事件——持续干期出现的频率。本文研究了过去几十年里,强降水过程出现频率发生改变的同一时期,这种趋势是否在北美北纬50。以南地区已经出现。同时,对日平均温度大于5°C,大量水分用于蒸腾的暖季及其给地面生态系统健康和农业带来巨大威胁的无降水期中,没有适量降水(>1.0 mm)的漫长干旱段进行了评价。在过去的四十年里,干旱段的平均持续时间显著延长,加拿大东南部持续20天以上,美国东部及沿墨西哥湾地区一个月以上,美国西南部及墨西哥北部2个月以上。 因此,美国东部为期一个月的干旱段的重现期减少了一大半,从15年缩减到6~7年。在相对湿季里,大部分北纬55o南部的大陆上旱段的平均持续时间正在延长。但是,这一趋势并没有在美国的西北部及与加拿大接壤的南部地区发现。

A disproportionate increase in precipitation coming from intense rain events, in the situation of general warming (thus, an extension of the vegetation period with intensive transpiration) and an insignificant change in total precipitation could lead to an increase in the frequency of potentially serious type of extreme events: prolonged periods without precipitation (even when the mean seasonal rainfall totals increase).  This paper investigates whether this development is already occurring during the past several decades over North America south of 55°N, for the same period when changes in frequency of intense precipitation events are being observed.   Lengthy strings of “dry” days without sizeable (>1.0 mm) precipitation were assessed only during the warm season (defined as a period when mean daily temperature is above the 5℃ threshold) when water is intensively used for transpiration and prolonged periods without sizable rainfall represent a hazard for terrestrial ecosystem's health and agriculture.  During the past four decades, the mean duration of prolonged dry episodes (20-days or longer in southeastern Canada, 1-month or longer in the Eastern United States and along the Gulf Coast of Mexico and 2-months or longer in the Southwestern United States and Northern Mexico) has significantly increased. As a consequence, the return period of 1-month-long dry episodes over the Eastern U.S. has been reduced more than twofold from 15 to 6~7 years.   The longer average duration of dry episodes has occurred during a relatively wet period around most of the continent south of 55°N but is not observed over the Northwestern U.S. and adjacent regions of Southern Canada. 

中图分类号: 

[1]Andreadis K M, Clark E A, Wood A W,et al. Twentieth-Century drought in the conterminous United States[J].Journal of Hydrometeorology,2005,6:985-1 001.
[2]Bengtsson L.Uncertainties of global climate predictions[C]//Schultze, et al,eds. Global Biogeochemical Cycles in the Climate System[M]. San Diego, London: Academic Press,2001:15-30.
[3]Cavazos T, Turrent C, Lettenmaier D P.Extreme precipitation variability in the core of the North American monsoon[J].Geophysical Research Letters, 2007(in review).
[4]Cayan D R, Kammerdiener S A, Dettinger M D, et al. Changes in the onset of spring in the Western United States[J].Bulletin of the American Meteorological Society,2001,82:399-415.
[5]Coles S G. An Introduction to Statistical Modeling of Extreme Values[M]. London: Springer-Verlag:2001.
[6]Dai A, Trenberth K E, Qian T. A global data set of Palmer Drought Severity Index for 1870-2002: Relationship with soil moisture and effects of surface warming[J].Journal of Hydrometeorology,2004,5:1 117-1 130. 
[7]Draper N R, Smith H. Applied Regression Analysis[M]. John Wiley & Sons, Inc,1966.
[8]Easterling D R. Recent changes in frost days and the frost-free season in the United States[J].Bulletin of the American Meteorological Society,2002, 83:1 327-1 332.
[9]Easterling D R, Evans J L, Ya P.et al. Observed variability and trends in extreme climate events:  A brief review[J].Bulletin of the American Meteorological Society,2000,81:417-425.
[10]Folland C K, Karl T R. Observed climate variability and change[C]//Houghton J T, et al, eds. Climate Change 2001: The Scientific Basis. Contribution of Working Group 1 to the Third IPCC Scientific Assessment. Cambridge, United Kingdom, New York: Cambridge University Press,2001:99-181.
[11]Frich P, et al. Observed coherent changes in climatic extremes during the second half of the twentieth century[J].Climate Research,2002,19:193-212.
[12]Gillett N P, Weaver A J, Zwiers F W,et al. Detecting the effect of climate change on Canadian forest fires[J].Geophysical Research Letters,31, L18211, doi:10.1029/2004GL020876,2004.
[13]Groisman P Ya, Easterling D R. Variability and trends of precipitation and snowfall over the United States and Canada[J]Journal of Climate,1994,7:184-205.
[14]Groisman P Ya, Legates D R.Documenting and detecting long-term precipitation trends: where we are and what should be done[J].Climatic Change,1995,31:601-622.
[15]Groisman P Y, 13 Co-Authors. Changes in the probability of heavy precipitation: Important indicators of climatic change[J]. Climatic Change,1999,42:243-283.
[16]Groisman P Ya, Knight R W, Karl T R. Heavy precipitation and high streamflow in the contiguous United States: Trends in the 20th century[J].Bulletin of the American Meteorological Society,,2001,82:219-246.
[17]Groisman P Ya, Knight R W,  Karl T R,et al. Contemporary changes of the hydrological cycle over the contiguous United States: Trends derived from in-situ observations[J].Journal of Hydrometeorology,2004,5:64-85. 
[18]Groisman P Ya, Knight R W, Easterling D R, et al. Trends in intense precipitation in the climate record[J].Journal of Climate,2005,18:1 326-1 350.
[19]Hegerl G C, Zwiers F W, Stott P A,et al. Detectability of anthropogenic changes in temperature and precipitation extremes[J].Journal of Climate,2004,17:3 683-3 700.
[20]Herweijer C, Seager R, Cook E R, et al.North American droughts of the last millennium from a gridded network of tree-ring data[J]. Journal of Climate,2007,20:1 353-1 376.
[21]Kagan R L.Averaging of meteorological fields[C]//Gandin L S, Smith T M, eds. English translation; originally published in Russian in 1979 by Gidrometeoizdat). Kluwer Academic Publishers,1997:279.
[22]Karl T R, Knight R W. Secular trends of precipitation amount, frequency, and intensity in the USA[J].Bulletin of the American Meteorological Society,1998,79:231-241. 
[23]Keetch J J, Byram G M. A drought index for forest fire control. USDA. Forest Service Research Paper SE-38. 35 pp.[EB/OL] http://www.srs.fs.fed.us/pubs/,1968.
[24]Kendall M G, Stuart A. Inference and Relationship[J].Vol. 2. The Advance Theory of Statistics. Ch. Griffin and Co,1967.
[25]Kharin V V, Zwiers F W, Zhang X. Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations[J].Journal of Climate,2007,20:1 419-1 444.
[26]Kunkel K E.North American trends in extreme precipitation[J].Natural Hazards,2003,29:291-305.
[27]Kunkel K E, Andsager K, Easterling D R. Long-term trends in extreme precipitation events over the conterminous United States and Canada[J].Journal of Climate,1999,12:2 515-2 527.
[28]Kunkel K E, Easterling D R, Redmond K,et al. Temporal variations in frost-free season in the United States: 1895-2000[J].Geophysical Research Letters,31, L03201, doi:10.1029/2003GL018624,2004.
[29]Manabe S, Wetherald R T, Stouffer R J. Summer dryness due to an increase of atmospheric CO2 concentration[J].Climatic Change,1981,3:347-386
[30]Manabe S, Wetherald R T, Milly P C D, et al.Century-scale change in water availability: CO2-quadrupling experiment[J].Climatic Change,2004,64:59-76.
[31]McAvaney B J. Co-Authors, 2001: Model Evaluation[C]//Houghton J T, et al, eds.Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. United Kingdom, Cambridge, New York: Cambridge University Press, 2001:471-523.
[32]McCabe G J, Clark M P. Trends and variability in snowmelt runoff in the Western United States[J].Journal of Hydrometeorology,2005, 6:476-482.
[33]National Climatic Data Center, NCDC, 2007:  TD-9640. Time bias corrected divisional   temperature-precipitation-drought index[EB/OL]. http://www1.ncdc.noaa.gov/pub/data/cirs/. Description available at http://www1.ncdc.noaa.gov/pub/data/cirs/drought.README,2007.
[34]Polyak I I. Computational Statistics in Climatology[M].Oxford: Oxford University Press,1996.
[35]Ropelewski C F, Halpert M S. Quantifying Southern Oscillation-Precipitation relationships[J].Journa of Climate,1996,9:1 043-1 059.
[36]Semenov V A, Bengtsson L. Secular trends in daily precipitation characteristics: Greenhouse gas simulation with a coupled AOGCM[J].Climate Dynamic,2002,19:123-140.
[37]Shein K A. State of the climate in 2005[J].Bulletin of the American Meteorological Society,2006,87:1-S102.
[38]Soil and Water Conservation Society. Conservation Implications of Climate Change: Soil Erosion and Runoff from Cropland[J].Soil and Water Conservation Society, Ankeny, Iowa,2003:24.
[39]Stone D A, Weaver A J, Zwiers F W. Trends in Canadian precipitation intensity[J].Atmosphere Ocean,2000,38:321-347.
[40]Sun B, P Ya Groisman. Variations in low cloud cover over the United States during the second half of the 20th century[J].Journal of Climate,2004,17:1 883-1 888.
[41]Vincent L A, Mekis E. Changes in daily and extreme temperature and precipitation indices for Canada over the 20th century. Atmoshere-Ocean,2006,44:177-193.
[42]Willeke G, Hosking J R M, Wallis J R,et al. The National Drought Atlas[R]. Institute for Water Resources Report 94-NDS-4,1994.

[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[3] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[4] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[5] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[6] 赵文玥,吉喜斌. 干旱区稀疏树木冠层降雨截留蒸发的研究进展与展望[J]. 地球科学进展, 2021, 36(8): 862-879.
[7] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[8] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[9] 梁承弘, 鹿化煜. 风成沉积物叶蜡氢同位素在揭示东亚季风区干湿变化中的原理及应用[J]. 地球科学进展, 2021, 36(1): 45-57.
[10] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[11] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[12] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[13] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[14] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[15] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
阅读次数
全文


摘要