地球科学进展 doi: 10.11867/j.issn.1001-8166.2025.081

   

基于时序遥感影像和深度学习的奈曼旗地区农田利用现状分析
谢君洋1,2,王轶1,2,黎孟琦1,2,余强毅3,吴文斌3,吴浩1,2*   
  1. (1. 华中师范大学 城市与环境科学学院,湖北 武汉 430079;2. 地理过程分析与模拟湖北省重点实验室,湖北 武汉 430079;3. 中国农业科学院农业资源与农业区划研究所,北京 100081)
  • 基金资助:
    国家重点研发计划项目(编号:2022YFB3903502);湖北省自然科学基金创新群体项目(编号:2024AFA032);华中师范大学优秀研究生教育创新资助项目(编号:2024CXZZ002)资助.

Investigation of Farmland Utilization in Naiman County Using Time-Series Remote Sensing Imagery and Deep Learning

XIE Junyang1, 2, WANG Yi1, 2, LI Mengqi1, 2, YU Qiangyi3,WU Wenbin3, WU Hao1, 2*   

  1. (1. College of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079, China; 2. Hubei Province Key Laboratory for Geographical Process Analysis and Simulation, Wuhan 430079, China; 3. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China)
  • About author:XIE Junyang, research areas include agricultural remote sensing and deep learning. E-mail: xjy959@mails.ccnu.edu.cn
  • Supported by:
    Project supported by the National Key Research and Development Program of China (Grant No. 2022YFB3903502); Hubei Provincial Natural Science Foundation of China (Grant No. 2024AFA032); the 2024 Excellent Graduate Education Innovation Funding Project of Central China Normal University (Grant No. 2024CXZZ002).
:开展奈曼旗地区的农田利用现状分析,有助于推动农牧交错区的农业高质量发展,支撑国家粮食安全战略。基于2020—2024 年Landsat 8 时序数据,采用随机森林分类提取主粮作物种植信息,并利用吉林一号数据,结合多尺度分割算法与U-Net 深度学习模型,提取农田地块与道路分布,系统评估区域的主粮作物种植格局与农田基础设施建设水平之间的关系。研究结果表明,近5年来,奈曼旗主粮作物种植面积稳步增长,累计净增22 673.46 hm2,增幅达12.9%,种植区域逐步由一般耕地向高标准农田转移。区域农田基础设施建设水平显著提升,高标准农田建设区的农田基础设施优于一般耕地区域。农田基础设施建设水平越高的区域,主粮作物种植面积越大,呈现出显著的空间一致性与正相关关系。
Abstract:Naiman Banner is located in an arid and semi-arid region and represents a typical agro-pastoral ecotone. Agricultural production in this area has long been constrained by complex natural conditions and the fragmented spatial distribution of cropland, resulting in an unclear understanding of the current state of farmland utilization. This, in turn, limits the region’s capacity for agricultural resource management and targeted policy implementation. Conducting an analysis of farmland utilization in Naiman Banner is therefore crucial for promoting high-quality agricultural development in agro-pastoral transitional zones and supporting the national food security strategy. In this study, Naiman Banner was selected as the research area. Based on Landsat 8 timeseries imagery, the spatial distribution of major grain crops from 2020 to 2024 was extracted using the random forest method. Additionally, Jilin-1 high-resolution remote sensing imagery was used in combination with a multiscale segmentation algorithm and the U-Net model to obtain cropland field parcels and road data for 2020 and 2024, respectively. On this basis, an evaluation index system for assessing the level of farmland infrastructure construction in the region was established. By integrating the extracted spatial distribution of major grain crops,this study focuses on analyzing the spatiotemporal patterns of major grain crops, the level of farmland infrastructure construction, and their interrelationship in Naiman Banner. Results showed a steady increase in the planting area of major grain crops over the five-year period, with a cumulative net growth of 22 673.46 ha, representing a 12.9% increase. Planting areas gradually shifted from general farmland to well-facilitated farmland. Meanwhile, agricultural infrastructure was continuously improved, with significantly higher development levels observed in well-facilitated farmland areas compared to general farmland. Further analysis revealed that regions with higher levels of agricultural infrastructure exhibited higher utilization rates of staple crops, demonstrating clear spatial consistency and a positive correlation. These findings provide provide technical support and decision-making references for regional agricultural resource management, optimization of infrastructure allocation, and food security assurance.

中图分类号: 

[1] 罗栋梁, 刘佳, 李晓英, 杜柯飞, 金会军, 陈方方, OLGA Makarieva, 王青志. 气候变化下冰椎演化及其水文生态与灾害效应[J]. 地球科学进展, 2025, 40(8): 767-777.
[2] 刘定洲, 刘虹辰, 张锦昌, 张江阳, 周鹏程, 郭鑫, 李璐, 黄彦铭. 基于U-Net卷积神经网络的海底磁异常条带自动识别方法研究——以沙茨基海隆为例[J]. 地球科学进展, 2025, 40(8): 864-876.
[3] 宋淑华, 王振占. 大气冰云中冰晶粒子取向的研究进展及应用现状分析[J]. 地球科学进展, 2025, 40(6): 592-603.
[4] 王永杰, 张晓东, 唐文彬, 赵少杰, 马晋, 孟义真, 王子卫, 周纪. 星载被动微波亮温影像轨道间隙填补:进展与展望[J]. 地球科学进展, 2025, 40(1): 99-110.
[5] 范亚伟, 杜鹤强, 杨胜飞, 颜长珍, 刘秀帆, 刘欣雷. 沙尘气溶胶数值模式与资料同化的研究进展、问题与展望[J]. 地球科学进展, 2024, 39(8): 813-822.
[6] 么嘉棋, 常奂宇, 王梦然, 陈敏, 莫凡, 徐南, 温振, 曹永强. 新一代水文水资源监测卫星SWOT数据特征、应用与展望[J]. 地球科学进展, 2024, 39(4): 374-390.
[7] 王思杰, 林金泰, 孔浩, 张宇航, 徐呈浩, 李春锦, 任芳萱. 基于卫星遥感的氮氧化物排放快速反演方法比较[J]. 地球科学进展, 2024, 39(3): 269-278.
[8] 张斌, 卫丹琪, 丁乙, 姜洪涛, 尹剑. 基于夜间灯光和土地利用的珠江流域城市碳排放估算及其时空动态特征研究[J]. 地球科学进展, 2024, 39(3): 317-328.
[9] 宋婉娟, 王力, 许时光, 黄妮, 牛铮. 深空DSCOVR对地观测研究进展与展望[J]. 地球科学进展, 2024, 39(12): 1211-1226.
[10] 许健, 张卓, 饶兰兰, 王雅鹏, 闫欢欢, 胡斯勒图, 石崇, 刘嵩, 格根塔娜, 王文煜, 石恩涛, 姚舜, 朱军, 王咏梅, 董晓龙, 施建成. 对流层臭氧卫星遥感反演综述[J]. 地球科学进展, 2024, 39(1): 56-70.
[11] 段梦伟, 李如仁, 刘东, 蒋昕桐, 仇志强, 李柯妤. 河流水体悬浮泥沙遥感研究进展与展望[J]. 地球科学进展, 2023, 38(7): 675-687.
[12] 黄春林, 侯金亮, 李维德, 顾娟, 张莹, 韩伟孝, 王维真, 温小虎, 朱高峰. 深度学习融合遥感大数据的陆地水文数据同化:进展与关键科学问题[J]. 地球科学进展, 2023, 38(5): 441-452.
[13] 农子琪, 黄鹏宇, 徐寒列, 胡秀清, 闵敏. 夜间星载微光成像仪在大气、海洋和环境领域的应用研究进展[J]. 地球科学进展, 2023, 38(5): 533-550.
[14] 王耀杰, 仲雷, 陈明星, 袁仁民, 吴晓庆, 邱学兴, 葛楠, 程美琳, 栗培真. 基于Landsat 8 OLI/TIRS的合肥市人为热通量遥感估算研究[J]. 地球科学进展, 2022, 37(7): 756-770.
[15] 屈猛, 赵羲, 庞小平, 雷瑞波. 北极冰间水道区域的物理过程和遥感观测研究进展[J]. 地球科学进展, 2022, 37(4): 382-391.
阅读次数
全文


摘要