地球科学进展 doi: 10.11867/j.issn.1001-8166.2024.046.

   

大气成因宇生核素10Be 指示土壤演化: 机理与进展
刘彧1,2,刘金涛3,刘承帅1,罗维均1,2,程安云1,2,王世杰1,2   
  1. (1. 中国科学院地球化学研究所 环境地球化学国家重点实验室,贵州 贵阳 550081; 2. 中国科学院普定喀斯特生态系统观测研究站,贵州 普定 562100; 3. 河海大学 水灾害防御全国重点实验室,江苏 南京 210098)
  • 基金资助:
    国家自然科学基金重点项目(编号:42330712);环境地球化学国家重点实验室自主部署项目(编号:SKLEG2024104);中国 科学院“西部之光”人才培养引进计划资助.

Meteoric Cosmogenic Nuclide 10Be Trace the Soil Evolution: Mechanism and Progress

LIU Yu1,2, LIU Jintao3, LIU Chengshuai1, LUO Weijun1,2, CHENG Anyun1,2, WANG Shijie1,2   

  1. (1. State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry Chinese Academy of Sciences, Guiyang 550081, China; 2. Puding Karst Ecosystem Research Station, Chinese Academy of Sciences, Puding Guizhou 562100, China; 3. The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China)
  • About author:LIU Yu, Associate professor, research areas include cosmogenic nuclide geochronology and landscape evolution.E-mail: liuyu@mail.gyig.ac.cn
  • Supported by:
    Project supported by the National Natural Science Foundation of China (Grant No. 42330712); Autonomous Strategy Project of the State Key Laboratory of Environmental Geochemistry (Grant No. SKLEG2024104); Chinese Academy of Sciences “Light of West China” Program.
在全球变化背景下,我国土壤面临严重的污染和侵蚀、退化问题,正在威胁生态系统稳定 性和粮食安全性。如何量化土壤的形成演化(时间和速率等)是地球科学领域的重要科学问题。 大气成因放射性宇生核素10Be(以下简称大气10Be)是天然示踪剂,其在土壤中的含量受成土时间、 地表侵蚀和化学风化等土壤演化过程综合控制,是定量示踪千万年来土壤形成演化过程的有效手 段,具有广阔的应用前景。首先系统梳理了10Be在地球大气层的生成、传输、沉降以及在土壤中累 积和迁移过程的最新研究进展,指出大气10Be长期沉降速率及其在风化带中迁移性的精确估算,是 本领域亟待解决的重要难题;其次评述了大气10Be用于估算成土时间、成土速率、指示土壤侵蚀及 在坡地运移等方面的方法,提出深入调查区域地质和环境过程并对模型参数和结果进行合理约 束,是应用大气10Be技术的关键前提。随着我国加速器质谱分析技术和能力的快速发展,将有力推 动大气10Be技术在土壤演化定量研究中的广泛应用,帮助解决环境生态系统演变预测及耕地土壤 保育等难题。
The soil is currently facing serious pollution, erosion, and degradation in the background of global change, which is threatening the ecosystem stability and food security of China. Quantifying soil formation and evolution (time and rate, etc.) is a critical scientific issue in Earth sciences. Meteoric radioactive isotope 10Be (hereinafter referred to as meteoric 10Be) serves as a natural tracer, with its inventory in soil controlled by soil age, surface erosion, and chemical weathering processes. Therefore, meteoric 10Be is an effective tool for quantitatively tracing the soil formation and evolution over ten million years and has a broad application prospect. Firstly, this article summarizes and reviews the latest progress on the production, delivery, and deposition of meteoric 10Be in the Earth's atmosphere, as well as its accumulation and migration in the soil profile. The reasonable estimation of the long-term deposition rate of meteoric 10Be and its migration in the weathering zones are important challenges that urgently need to be resolved in this field. Secondly, this article introduces the main methods used by meteoric 10Be to estimate soil formation (residence) age, and formation rate, indicating soil erosion and transportation on hill slopes. The key premise for applying meteoric 10Be technology is based on an understanding of geological and environmental processes in the study area and making a rational assessment of the calculation model. With the rapid development of accelerator mass spectrometry analysis capabilities in China will effectively promote the widespread application of meteoric 10Be technology in quantitative research on soil evolution, helping to solve problems such as predicting environmental ecosystem evolution and soil conservation in arable land.

中图分类号: 

[1] 赵正, 冯潇, 刘成, 陈硕桐, 刘志伟, 王燕, 夏少攀, 刘晓雨, 卞荣军, 张旭辉, 程琨, 郑聚锋, 李恋卿, 潘根兴. 土坷垃与泥疙瘩:如何认识和表征土壤团聚体生物物理结构?[J]. 地球科学进展, 2024, 39(8): 772-787.
[2] 刘彧, 刘金涛, 刘承帅, 罗维均, 程安云, 王世杰. 大气成因放射性宇生核素 10Be指示土壤演化:机理与进展[J]. 地球科学进展, 2024, 39(6): 565-575.
[3] 赵正, 刘成, 冯潇, 陈硕桐, 龚静雯, 刘志伟, 王燕, 夏少攀, 刘晓雨, 卞荣军, 张旭辉, 程琨, 郑聚锋, 李恋卿, 潘根兴. 土坷垃与泥圪塔:认识和表征土壤团聚体系统的生态系统功能及服务[J]. 地球科学进展, 2024, 39(10): 987-1008.
[4] 夏亚飞, 刘宇晖, 高庭, 刘承帅. 基于金属稳定同位素的矿冶影响区土壤重金属污染源解析研究进展[J]. 地球科学进展, 2023, 38(4): 331-348.
[5] 宋文婕, 梁誉正, 陶贞, 钟庆祥, 贺一聪. 微生物介导的土壤有机碳动态研究进展[J]. 地球科学进展, 2023, 38(12): 1213-1223.
[6] 钟庆祥, 张豫, 陶贞, 贺一聪, 吴迪, 林培松. 土壤—植物系统硒的迁移转化机制研究进展[J]. 地球科学进展, 2023, 38(1): 44-56.
[7] 陈少鹏, 段跃芳. 中国农业碳效应研究的现状、热点与趋势[J]. 地球科学进展, 2023, 38(1): 86-98.
[8] 陈庆强, 王雪悦, 姚振兴, 杨钦川. 长江口不同年代围垦区土壤有机质结构组成特征[J]. 地球科学进展, 2022, 37(9): 915-924.
[9] 田子晗, 张勇勇, 赵文智, 王丽莎, 王川, 康文蓉, 吴绍雄. 宇宙射线中子技术的中尺度土壤水研究进展及在荒漠绿洲区的应用[J]. 地球科学进展, 2022, 37(9): 979-990.
[10] 张彧行, 翁白莎, 严登华. 基于文献可视化分析的土壤团聚体研究进展[J]. 地球科学进展, 2022, 37(4): 429-438.
[11] 段勋, 李哲, 刘淼, 邹元春. 铁介导的土壤有机碳固持和矿化研究进展[J]. 地球科学进展, 2022, 37(2): 202-211.
[12] 刘强, 袁延飞, 刘一帆, 石美, 王潇, 罗先香, 李霄云, 郑浩, 李锋民. 生物炭对盐渍化土壤改良的研究进展[J]. 地球科学进展, 2022, 37(10): 1005-1024.
[13] 潘颜霞, 张亚峰, 虎瑞. 吸湿凝结水对荒漠地区生物土壤结皮生态功能的影响综述[J]. 地球科学进展, 2022, 37(1): 99-109.
[14] 李芦頔,吴冰,李鑫璐,杨洁,林良国. 土壤侵蚀中的片蚀研究综述[J]. 地球科学进展, 2021, 36(7): 712-726.
[15] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
阅读次数
全文


摘要