地球科学进展 doi: 10.11867/j.issn.1001-8166.2012.11.1288

所属专题: 青藏高原研究——青藏科考虚拟专刊

研究简报 上一篇    

青藏高原科研文献地理信息空间分析研究
王雪梅 1, 2,李 新 2,马明国 2,张志强 1   
  1. 1.中国科学院国家科学图书馆兰州分馆/中国科学院资源环境科学信息中心,甘肃 兰州 730000;
    2.中国科学院寒区旱区环境与工程研究所,甘肃 兰州 730000
  • 收稿日期:2012-04-07 修回日期:2012-06-27 出版日期:2012-11-10
  • 基金资助:

    中国科学院资源环境科学与技术局委托任务“资源环境科技发展态势监测分析与战略研究”(编号:20112015);中国科学院“西部之光”项目“我国资源环境科学发展的空间演替研究”;国家自然科学基金项目“基于GIS的青藏高原科研文献知识发现研究”(编号:40701133)资助.

Spatial Analysis on the Geographical Information of the Scientific Literatures for Qinghai-Tibet Plateau

Wang Xuemei 1,2, Li Xin 2, Ma Mingguo 2, Zhang Zhiqiang 1   

  1. 1.Lanzhou Branch of the National Science Library, Scientific Information Center for Resources and Environment, Chinese Academy of Sciences, Lanzhou 730000, China;2. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
  • Received:2012-04-07 Revised:2012-06-27 Online:2012-11-10 Published:2012-11-10

多学科的协同、渗透、交叉已成为当代科学发展的重要趋势,文献计量学和地理信息系统(GIS)技术的集成是拓展GIS应用领域的一个新兴方向。许多与地理空间位置有关的信息包含在大量地学科研文献中。从CNKI文献数据库收录的研究青藏高原的科研文献中提取研究区、样带和采样点等位置相关信息,运用GIS技术进行空间分析和展现。结果显示,青藏高原研究的主要学科领域集中在生态环境及其变化、地质与地球物理特征及其演化、资源及其勘探、地质工程等方面。有关青藏高原的研究在空间分布上存在较大的差异,对青藏高原的研究从西南、西北到东南、东北区域,其受关注的程度逐渐增加。祁连山脉、羌塘高原、青海湖、青藏公路、青藏铁路和川藏公路等是研究的热点区域。沿经度和纬度方向不同区间研究的分布也不同,研究热点区域呈现出从青藏高原中部向东北部转移的趋势。多数采样点和观测点沿交通干线分布,并且随着与交通干线距离的增加数量明显减少。GIS技术在关于青藏高原的文献计量分析中得到了有效应用,有助于挖掘出大量与空间位置相关的信息,从而深入分析青藏高原研究的发展态势。

The multi-disciplinary cooperation and intersection becomes the main development tendency of the modern sciences. It is a new direction to expand the Geographical Information System (GIS) application areas by integrating the GIS technologies with Bibliometrics. A lot of geographic-related information is involved in the literatures concerned with geosciences normally involve some geo-science references. In this paper, the locationrelated information (e.g. study areas, sampling trips and sampling points) was extracted from the CNKI-indexed  scientific literatures for QinghaiTibet Plateau. These data were spatially analyzed and presented by using the GIS technologies. The subject areas about the Qinghai-Tibet Plateau studies mainly focus on the ecological environment and its changes, geologicalgeophysical feature and evolution, natural resources and exploration, and geological engineering. The results indicate that there are big differences of the spatial distribution for Qinghai-Tibet Plateau researches. For the large scale, the degree of interest increases gradually as follows: southwest, northwest, southeast, and northeast. For the region scale, Qilian Mountains, Qiangtang Plateau, QinghaiTibet road and Qinghai-Tibet Railway, Qinghai Lake, and SichuanTibet Highway are the hotspot regions. There are also big differences along the latitudinal direction and longitudinal direction, which indicates a transfer tendency from middle to northern Qinghai-Tibet Plateau. Most of the sampling and observing points are close to the traffic lines. The sampling point numbers decrease quickly with the increasing distance to the traffic lines. It is also indicated that the GIS technologies are effectively used in bibliometrical analysis of Qinghai-Tibet Plateau studies, which is of benefit to us for mining a great deal of spatial relative information and analyzing the developing trends.

中图分类号: 

[1]Hansen J, Sato M, Ruedy R, et al. Forcings and chaos in interannual to decadal climate change[J]. Journal of Geophysical Research, 1997,102(D22):25 679-25 720.

[2]Konstantin Y V, Norman C G. Global warming trend of mean tropospheric temperature observed by Satellites[J]. Science, 2003, 302(5 643): 269-272.

[3]Pan Baotian, Li Jijun. Qinghai-Tibetan Plateau: A driver and amplifier of the global climatic change─Ⅲ. The effects of the uplift of Qinghai-Tibetan Plateau on climatic changes[J]. Journal of Lanzhou University (Natural Science), 1996, 32(1): 108-115.[潘保田,李吉均. 青藏高原:全球气候变化的驱动机与放大器——Ⅲ.青藏高原隆起对气候变化的影响[J]. 兰州大学学报:自然科学版, 1996, 32(1): 108-115.]

[4]Zheng Du, Yao Tandong. Progress in research on formation and evolution of Tibetan Plateau with its environment and resource effects[J]. China Basic Science, 2004,(2):15-21.[郑度,姚檀栋.青藏高原形成演化及其环境资源效应研究进展[J]. 中国基础科学,2004,(2):15-21.]

[5]Pang Jing’an. Scientometrics Research Methodology [M]. Beijing: Science and Technology Literature Publishing House, 2002:123-125. [庞景安.科学计量研究方法论[M]. 北京: 科学技术文献出版社,2002:123-125.]

[6]Smith T R. A digital library for geographically referenced materials [J]. Computer, 1996, 29(5):54-60.

[7]Hengl T, Minasny B, Gould M. A geostatistical analysis of geostatistics [J]. Scientometrics, 2009, 80(2): 491-514.

[8]Agnieszka O, Adam P. Mapping the regional science performance. Evidence from Poland [J]. Collnet Journal of Scientometrics Information Management, 2010, 4(1): 21-27.

[9]Ma Ding, Meng L. The change of the number of troops in the Space Time Cube for the Red Army Long March[C]∥Proceedings of SPIE.Wuhan, China, 2009, 74720X: 1-10.

[10]Wang Lin. A GIS-Based Environmental Archaeology Study in Holocene Northern China [D].Canberra: Australian National University, 2010.

[11]Wang X M, Ma M G. Spatial information mining and visualization from Qinghai-Tibet Plateau’s literature based on GIS[C]∥Proceedings of SPIE.2009, 747220:1-8.

[12]Jiang Jiahu, Huang Qun. Distribution and variation of lakes in Tibetan Plateau and their comparison with lakes in other part of China[J]. Water Resources Protection, 2004,(6): 24-27.[姜加虎,黄群. 青藏高原湖泊分布特征及与全国湖泊比较[J]. 水资源保护, 2004,(6): 24-27.]

[1] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[2] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[3] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[4] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[5] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[6] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[7] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[8] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[9] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[10] 姚天次,卢宏玮,于庆,冯玮. 50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展, 2020, 35(5): 534-546.
[11] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[12] 苗毅, 刘海猛, 宋金平, 戴特奇. 青藏高原交通设施建设及影响评价研究进展[J]. 地球科学进展, 2020, 35(3): 308-318.
[13] 刘小茜,裴韬,舒华,高锡章. 基于文献计量学的社会—生态系统恢复力研究进展[J]. 地球科学进展, 2019, 34(7): 765-777.
[14] 牛富俊, 王玮, 林战举, 罗京. 青藏高原多年冻土区热喀斯特湖环境及水文学效应研究[J]. 地球科学进展, 2018, 33(4): 335-342.
[15] 李强. 基于文献计量学分析2016年度岩溶学研究热点[J]. 地球科学进展, 2017, 32(5): 535-545.
阅读次数
全文


摘要