Please wait a minute...
img img
高级检索
地球科学进展
研究简报     
青藏高原科研文献地理信息空间分析研究
王雪梅1, 2,李 新2,马明国2,张志强1
1.中国科学院国家科学图书馆兰州分馆/中国科学院资源环境科学信息中心,甘肃 兰州 730000;
2.中国科学院寒区旱区环境与工程研究所,甘肃 兰州 730000
Spatial Analysis on the Geographical Information of the Scientific Literatures for Qinghai-Tibet Plateau
Wang Xuemei1,2, Li Xin2, Ma Mingguo2, Zhang Zhiqiang1
1.Lanzhou Branch of the National Science Library, Scientific Information Center for Resources and Environment, Chinese Academy of Sciences, Lanzhou 730000, China;2. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
 全文: PDF(1742 KB)  
摘要:

多学科的协同、渗透、交叉已成为当代科学发展的重要趋势,文献计量学和地理信息系统(GIS)技术的集成是拓展GIS应用领域的一个新兴方向。许多与地理空间位置有关的信息包含在大量地学科研文献中。从CNKI文献数据库收录的研究青藏高原的科研文献中提取研究区、样带和采样点等位置相关信息,运用GIS技术进行空间分析和展现。结果显示,青藏高原研究的主要学科领域集中在生态环境及其变化、地质与地球物理特征及其演化、资源及其勘探、地质工程等方面。有关青藏高原的研究在空间分布上存在较大的差异,对青藏高原的研究从西南、西北到东南、东北区域,其受关注的程度逐渐增加。祁连山脉、羌塘高原、青海湖、青藏公路、青藏铁路和川藏公路等是研究的热点区域。沿经度和纬度方向不同区间研究的分布也不同,研究热点区域呈现出从青藏高原中部向东北部转移的趋势。多数采样点和观测点沿交通干线分布,并且随着与交通干线距离的增加数量明显减少。GIS技术在关于青藏高原的文献计量分析中得到了有效应用,有助于挖掘出大量与空间位置相关的信息,从而深入分析青藏高原研究的发展态势。

关键词: 青藏高原研究区采样点空间分析文献计量学    
Abstract:

The multi-disciplinary cooperation and intersection becomes the main development tendency of the modern sciences. It is a new direction to expand the Geographical Information System (GIS) application areas by integrating the GIS technologies with Bibliometrics. A lot of geographic-related information is involved in the literatures concerned with geosciences normally involve some geo-science references. In this paper, the locationrelated information (e.g. study areas, sampling trips and sampling points) was extracted from the CNKI-indexed  scientific literatures for QinghaiTibet Plateau. These data were spatially analyzed and presented by using the GIS technologies. The subject areas about the Qinghai-Tibet Plateau studies mainly focus on the ecological environment and its changes, geologicalgeophysical feature and evolution, natural resources and exploration, and geological engineering. The results indicate that there are big differences of the spatial distribution for Qinghai-Tibet Plateau researches. For the large scale, the degree of interest increases gradually as follows: southwest, northwest, southeast, and northeast. For the region scale, Qilian Mountains, Qiangtang Plateau, QinghaiTibet road and Qinghai-Tibet Railway, Qinghai Lake, and SichuanTibet Highway are the hotspot regions. There are also big differences along the latitudinal direction and longitudinal direction, which indicates a transfer tendency from middle to northern Qinghai-Tibet Plateau. Most of the sampling and observing points are close to the traffic lines. The sampling point numbers decrease quickly with the increasing distance to the traffic lines. It is also indicated that the GIS technologies are effectively used in bibliometrical analysis of Qinghai-Tibet Plateau studies, which is of benefit to us for mining a great deal of spatial relative information and analyzing the developing trends.

Key words:  Qinghai-Tibet Plateau    Study area    Sampling points    Spatial analysis    Bibliometrics
收稿日期: 2012-04-07 出版日期: 2012-11-10
:  P9  
基金资助:

中国科学院资源环境科学与技术局委托任务“资源环境科技发展态势监测分析与战略研究”(编号:20112015);中国科学院“西部之光”项目“我国资源环境科学发展的空间演替研究”;国家自然科学基金项目“基于GIS的青藏高原科研文献知识发现研究”(编号:40701133)资助.

作者简介: 王雪梅(1976-),女,重庆永川人,副研究员,主要从事资源环境科学计量评价研究.E-mail:wxm@lzb.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王雪梅
李 新
马明国
张志强

引用本文:

王雪梅,李 新,马明国,张志强. 青藏高原科研文献地理信息空间分析研究[J]. 地球科学进展, 10.11867/j.issn.1001-8166.2012.11.1288.

Wang Xuemei, Li Xin, Ma Mingguo, Zhang Zhiqiang. Spatial Analysis on the Geographical Information of the Scientific Literatures for Qinghai-Tibet Plateau. Advances in Earth Science, 10.11867/j.issn.1001-8166.2012.11.1288.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2012.11.1288        http://www.adearth.ac.cn/CN/Y2012/V27/I11/1288

[1]Hansen J, Sato M, Ruedy R, et al. Forcings and chaos in interannual to decadal climate change[J]. Journal of Geophysical Research, 1997,102(D22):25 679-25 720.

[2]Konstantin Y V, Norman C G. Global warming trend of mean tropospheric temperature observed by Satellites[J]. Science, 2003, 302(5 643): 269-272.

[3]Pan Baotian, Li Jijun. Qinghai-Tibetan Plateau: A driver and amplifier of the global climatic change─Ⅲ. The effects of the uplift of Qinghai-Tibetan Plateau on climatic changes[J]. Journal of Lanzhou University (Natural Science), 1996, 32(1): 108-115.[潘保田,李吉均. 青藏高原:全球气候变化的驱动机与放大器——Ⅲ.青藏高原隆起对气候变化的影响[J]. 兰州大学学报:自然科学版, 1996, 32(1): 108-115.]

[4]Zheng Du, Yao Tandong. Progress in research on formation and evolution of Tibetan Plateau with its environment and resource effects[J]. China Basic Science, 2004,(2):15-21.[郑度,姚檀栋.青藏高原形成演化及其环境资源效应研究进展[J]. 中国基础科学,2004,(2):15-21.]

[5]Pang Jing’an. Scientometrics Research Methodology [M]. Beijing: Science and Technology Literature Publishing House, 2002:123-125. [庞景安.科学计量研究方法论[M]. 北京: 科学技术文献出版社,2002:123-125.]

[6]Smith T R. A digital library for geographically referenced materials [J]. Computer, 1996, 29(5):54-60.

[7]Hengl T, Minasny B, Gould M. A geostatistical analysis of geostatistics [J]. Scientometrics, 2009, 80(2): 491-514.

[8]Agnieszka O, Adam P. Mapping the regional science performance. Evidence from Poland [J]. Collnet Journal of Scientometrics Information Management, 2010, 4(1): 21-27.

[9]Ma Ding, Meng L. The change of the number of troops in the Space Time Cube for the Red Army Long March[C]∥Proceedings of SPIE.Wuhan, China, 2009, 74720X: 1-10.

[10]Wang Lin. A GIS-Based Environmental Archaeology Study in Holocene Northern China [D].Canberra: Australian National University, 2010.

[11]Wang X M, Ma M G. Spatial information mining and visualization from Qinghai-Tibet Plateau’s literature based on GIS[C]∥Proceedings of SPIE.2009, 747220:1-8.

[12]Jiang Jiahu, Huang Qun. Distribution and variation of lakes in Tibetan Plateau and their comparison with lakes in other part of China[J]. Water Resources Protection, 2004,(6): 24-27.[姜加虎,黄群. 青藏高原湖泊分布特征及与全国湖泊比较[J]. 水资源保护, 2004,(6): 24-27.]

[1] 李强. 基于文献计量学分析2016年度岩溶学研究热点[J]. 地球科学进展, 2017, 32(5): 535-545.
[2] 王修喜. 低温热年代学在青藏高原构造地貌发育过程研究中的应用[J]. 地球科学进展, 2017, 32(3): 234-244.
[3] 李明启, 邵雪梅. 基于树轮资料初探过去千年强火山喷发与青藏高原东部温度变化关系[J]. 地球科学进展, 2016, 31(6): 634-642.
[4] 王婷. 基于文献计量的青藏高原国际合作研究态势分析[J]. 地球科学进展, 2016, 31(6): 650-662.
[5] 王雪梅, 张志强, 肖仙桃. 中科院资源环境科学领域发展态势文献计量分析[J]. 地球科学进展, 2015, 30(11): 1287-1293.
[6] 宋扬, 唐菊兴, 曲晓明, 王登红, 辛洪波, 杨超, 林彬, 范淑芳. 西藏班公湖—怒江成矿带研究进展及一些新认识[J]. 地球科学进展, 2014, 29(7): 795-809.
[7] 游超, 姚檀栋, 邬光剑. 雪冰中生物质燃烧记录研究进展[J]. 地球科学进展, 2014, 29(6): 662-673.
[8] 马耀明, 胡泽勇, 田立德, 张凡, 段安民, 阳坤, 张镱锂, 杨永平. 青藏高原气候系统变化及其对东亚区域的影响与机制研究进展[J]. 地球科学进展, 2014, 29(2): 207-215.
[9] 马巍,牛富俊,穆彦虎. 青藏高原重大冻土工程的基础研究[J]. 地球科学进展, 2012, 27(11): 1185-1191.
[10] 王澄海,吴永萍,崔 洋. CMIP研究计划的进展及其在中国地区的检验和应用前景[J]. 地球科学进展, 2009, 24(5): 461-468.
[11] 马耀明,姚檀栋,胡泽勇,王介民. 青藏高原能量与水循环国际合作研究的进展与展望[J]. 地球科学进展, 2009, 24(11): 1280-1284.
[12] 许强,陈伟,张倬元. 对我国西南地区河谷深厚覆盖层成因机理的新认识[J]. 地球科学进展, 2008, 23(5): 448-456.
[13] 吴青柏,程国栋. 多年冻土区天然气水合物研究综述[J]. 地球科学进展, 2008, 23(2): 111-119.
[14] 郑洪波,汪品先,刘志飞,杨守业,王家林,李前裕,周祖翼,贾军涛,李上卿,贾健宜,JohnChappell,YoshikiSaito,TakahiroInoue. 东亚东倾地形格局的形成与季风系统演化历史寻踪——综合大洋钻探计划683号航次建议书简介[J]. 地球科学进展, 2008, 23(11): 1150-1160.
[15] 姚海涛,赵志中,王书兵,乔彦松,李朝柱,傅建利,王燕,蒋复初. 攀西地区晚新生代沉积研究回顾与问题讨论[J]. 地球科学进展, 2007, 22(5): 504-514.