地球科学进展 ›› 2010, Vol. 25 ›› Issue (1): 14 -21. doi: 10.11867/j.issn.1001-8166.2010.01.0014

综述与评述 上一篇    下一篇

海冰反照率参数化方案的研究回顾
杨清华 1,2;张占海 3;刘骥平 4;吴辉碇 1,3 ;张林 1   
  1. 1.国家海洋环境预报中心,北京100081;2.国家海洋局第二海洋研究所,浙江杭州310012;3.中国极地研究中心国家海洋局极地科学重点实验室,上海200136;4.中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室,北京100029
  • 收稿日期:2009-07-06 修回日期:2009-10-19 出版日期:2010-01-10
  • 通讯作者: 杨清华 E-mail:yqh@nmefc.gov.cn
  • 基金资助:

    国家自然科学基金重点项目“北极海冰快速变化及其天气气候效应”(编号:40930848);国家科技支撑计划重点项目“南大洋海冰监测与冰—海耦合模式研究”(编号:2006BAB18B03);国际极地年中国行动专项项目“北极冰—气能量交换过程及通量参数化方法研究”(编号:IPY2008-P0504002-03)资助.

Review of Sea Ice Albedo Parameterizations

YANG Qinghua 1,2, ZHANG Zhanhai 3, LIU Jiping 4, WU Huiding 1,3, ZHANG Lin 1   

  1. 1.National Marine Environmental Forecasting Center, Beijing100081, China;2.Second Institute of Oceanography, State Oceanic Administration, Hangzhou310012, China; 3.Polar Research Institute of China, Shanghai200136, China; 4.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing100029, China
  • Received:2009-07-06 Revised:2009-10-19 Online:2010-01-10 Published:2010-01-10
  • Contact: Qinghua Yang E-mail:yqh@nmefc.gov.cn

在全球变暖的背景下,北极海冰在发生快速变化,海冰覆盖范围明显减小,厚度显著变薄,积雪/海冰—反照率正反馈机制在此背景下变得愈发重要。气候系统和单一海冰模式采用了从简单到复杂的海冰反照率参数化方案。首先对模式中的海冰反照率参数化进行了回顾,并结合对现有卫星反照率产品问题的分析,概述了前人对参数化的评估研究工作。在此基础上进一步讨论了气候模式中海冰反照率参数化方案存在的问题,一方面目前的反照率参数化对海冰融池和冰间水道等物理过程的考虑还不够完善,另一方面反照率参数化方案的发展受到观测数据可用性的制约。最后对参数化的发展方向进行了初步探讨。

Associated with global warming, the Arctic sea ice has been undergoing rapid changes for the three decades, including the decline of sea ice extent and thinning of sea ice thickness. As a result, the snow/sea ice-albedo positive feedback mechanism is becoming more and more important. Currently, a diversity of sea ice albedo parameterizations are used in climate system models and standalone sea ice models, ranging from simple to complex. In this paper, we reviewed previous studies on the evaluations of the snow/ice albedo parameterizations, and discussed some problems of the satellitederived surface albedo for the ice covered ocean. We put forward some ongoing issues related to further developments of the albedo parameterizations as climate warms, including melt ponds and leads. Also, we discussed the potential impacts of the lack of observational data on the development of the albedo parameterization.

中图分类号: 

[1] IPCC.Climate Change 2007: The Physical Science Basis[R]. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,2007.
[2] Curry J A, Schramm J L, Ebert E E. On the sea ice albedo climate feedback mechanism[J]. Journal of Climate,1995,8: 240-247.
[3] Curry J A, Schramm J L, Perovich D K, et al. Applications of SHEBA/FIRE data to evaluation of snow/ice albedo parameterizations[J].Journal of Geophysical Research,2001,106: 15 345-15 355.
[4] Perovich D K, Richter-Menge J A. Loss of sea ice in the Arctic[J].Annual Review of Materials Science,2009,1:417-419.
[5] Holland M M, Bitz C M. Polar amplification of climate change in coupled models[J].Climate Dynamics,2003, 21: 221-232.
[6] Hall A. The role of surface albedo feedback in climate[J].Journal of Climate,2004,17:1 550-1 568.
[7] Light B, Maykut G A, Grenfell T C. A temperature-dependent, structural-optical model of first-year sea ice[J].Journal of Geophysical Research,2004, 109, C06013, doi:10.1029/2003JC002164.
[8] Liu J,Zhang Z,Inoued J,et al. Evaluation of snow/ice albedo parameterizations and their impacts on sea ice simulations[J].International Journal of Climatology,2007, 27: 81-91.
[9] Grenfell T C, Warren S G,Mullen P C. Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths[J].Journal of Geophysical Research,1994,99(9): 18 669-18 684.
[10] Curry J A,Randall D,Rossow W B, et al. Overview of arctic cloud and radiation characteristics[J].Journal of Climate,1996, 9:1 731-1 764.
[11] Perovich D K,Grenfell T C. Laboratory studies of the optical properties of young sea ice[J].Journal of Glaciology,1981, 27:331-346.
[12] Tschudi M,Curry J A,Maslanik J M. Airborne observations of summertime surface features and their effect on surface albedo during FIRE/SHEBA[J].Journal of Geophysical Research,2001, 106(14):15 335-15 344.
[13] Parkinson C L, Washington W M. A large scale numerical model of sea ice[J].Journal of Geophysical Research,1979, 84:311-337.
[14] Hibler W D.Modeling a variable thickness sea ice cover[J].Monthly Weather Review,1980, 108(12):1 943-1 973.
[15] Perovich D K.The Optical Properties of Sea Ice[M].US Cold Regions Research and Engineering Laboratory Monograph,1996.
[16] Weatherly J W, Briegleb B P,Large W G, et al. Sea ice and polar climate in the NCAR CSM[J].Journal of Climate,1998,11:1 472-1 486.
[17] Ingram W J, Wilson C A, Mitchell J F B. Modeling climate change: An assessment of sea ice and surface albedo feedbacks[J].Journal of Geophysical Research,1989, 94: 8 609-8 622.
[18] Ross B R,Walsh J E. A comparison of simulated and observed fluctuations in summertime Arctic surface albedo[J].Journal of Geophysical Research,1987, 92:13 115-13 125.
[19] Dethloff K, Rinke L R, Christensen J H, et al. A regional climate model of the Arctic atmosphere[J].Journal of Geophysical Research,1996,101: 23 401-23 422.
[20] Manabe S,Spelman M J, Stouffer R J. Transient responses of a coupled ocean-atmosphere model to gradual changes of atmospheric CO2 Part II: Seasonal response[J].Journal of Climate,1992, 5(2):105-126.
[21] Lynch A H, Chapman W L, Walsh J E, et al. Development of a regional climate model of the western Arctic[J].Journal of Climate,1995, 8:1 555-1 570.
[22] Flato G M, Brown R D. Variability and climate sensitivity of landfast Arctic sea ice[J].Journal of Geophysical Research,1996,101(10):25 767-25 778.
[23] Briegleb B P, Bitz C M, Hunke E C, et al.Scientific Description of the Sea ice Component in the Community Climate System Model(Version Three)[M].Colorado: National Center for Atmospheric Pesearch, Bowder,2004.
[24] Schramm J L,Holland M,Curry J A, et al. Modeling the thermodynamics of a distribution of sea ice thicknesses. Part I: Sensitivity to ice thickness resolution[J].Journal of Geophysical Research,1997, 102:23 079-23 092.
[25] Perovich D K, Grenfell T C, Light B, et al. Seasonal evolution of the albedo of multiyear Arctic sea ice[J].Journal of Geophysical Research,2002,107,8044,doi:10.1029/2000JC000438.
[26] Chen L.The Report of 1999 Chinese Arctic Research Expedition[M].Beijing: Ocean Press,1999:98-100.
[27] Zhang Z.The Report of 2003 Chinese Arctic Research Expedition\[M\].Beijing:Ocean Press,2004:202-204.
[28] Zhang H.The Report of 2008 Chinese Arctic Research Expedition[M].Beijing:Ocean Press,2009:170-176.
[29] Rossow W B,Schiffer R A.Advances in understanding clouds from ISCCP[J].Bulletin of  American Meteorology Society,1999,80:2 261-2 288.
[30] Key J.The Cloud and Surface Parameter Retrieval (CASPR) System for Polar AVHRR User's Guide[M]. Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin,1998.
[31] Cheng Bin,Timo V,Zhang Zhanhai, et al.Snow and sea ice thermodynamics in the Arctic: Model validation and sensitivity study against SHEBA data[J].Chinese Journal of Polar Science,2008,19(2):108-122. 
[32] KØltzow M.Parameterization of sea ice albedo in climate models\[R\].Regclim General Technical Report, Norway: Norwegian Meteorological Enstitute,2003, 7:71-75.
[33] Comiso J C,Parkinson C L,Gersten R,et al. Accelerated decline in the Arctic sea ice cover[J].Geophysical Research Letters,2008, 35, L01703, doi:10.1029/2007GL031972.
[34] Briegleb B P, Light B.A Delta-Eddington Multiple Scattering Parameterization for Solar Radiation in the Sea Ice Component of the Community Climate System Model[M]. NCAR Technical Note NCAR/TN-472+STR, National Center for Atmospheric Research, 2007.

[1] 吴延俊, 赵进平. 欧亚海盆大西洋水输运过程及热释放研究进展[J]. 地球科学进展, 2020, 35(3): 231-245.
[2] 王冰笛, 李清泉, 沈新勇, 董李丽, 汪方, 王涛, 梁信忠. 区域气候模式 CWRF对东亚冬季风气候特征的模拟[J]. 地球科学进展, 2020, 35(3): 319-330.
[3] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[4] 效存德,陈卓奇,江利明,丁明虎,窦挺峰. 格陵兰冰盖监测、模拟及气候影响研究[J]. 地球科学进展, 2019, 34(8): 781-786.
[5] 尤元红,黄春林,张莹,侯金亮. Noah-MP模型中积雪模拟对参数化方案的敏感性评估[J]. 地球科学进展, 2019, 34(4): 356-365.
[6] 马雷鸣, 鲍旭炜. 数值天气预报模式物理过程参数化方案的研究进展[J]. 地球科学进展, 2017, 32(7): 679-687.
[7] 刘冠州, 梁信忠. 新一代区域气候模式(CWRF)国内应用进展[J]. 地球科学进展, 2017, 32(7): 781-787.
[8] 聂红涛, 王蕊, 赵伟, 罗晓凡, 祁第, 鹿有余, 张远辉, 魏皓. 北冰洋太平洋扇区碳循环变化机制研究面临的关键科学问题与挑战[J]. 地球科学进展, 2017, 32(10): 1084-1092.
[9] 王昊亮, 刘玉宝, 赵天良, 郭凤霞, 冯双磊, 王勃. 基于数值天气模式及其模式输出的闪电预报研究进展[J]. 地球科学进展, 2017, 32(1): 44-55.
[10] 汪燕敏, 祁第, 陈立奇. 南大洋酸化指标——海水文石饱和度变异的研究进展[J]. 地球科学进展, 2016, 31(4): 357-364.
[11] 栾贻花, 俞永强, 郑伟鹏. 全球高分辨率气候系统模式研究进展[J]. 地球科学进展, 2016, 31(3): 258-268.
[12] 赵进平, 史久新, 王召民, 李志军, 黄菲. 北极海冰减退引起的北极放大机理与全球气候效应[J]. 地球科学进展, 2015, 30(9): 985-995.
[13] 吴胜标, 闻建光, 刘强, 窦宝成, 游冬琴. 黑河流域地表反照率估算及其时空特征分析[J]. 地球科学进展, 2015, 30(6): 680-690.
[14] 汤秋鸿, 黄忠伟, 刘星才, 韩松俊, 冷国勇, 张学君, 穆梦斐. 人类用水活动对大尺度陆地水循环的影响[J]. 地球科学进展, 2015, 30(10): 1091-1099.
[15] 王连喜, 吴建生, 李琪, 顾嘉熠, 薛红喜. AquaCrop作物模型应用研究进展[J]. 地球科学进展, 2015, 30(10): 1100-1106.
阅读次数
全文


摘要