[1] Retallack G J. Soils of the Past[M]. London: Unwin Hyman, 2001.
[2] Liu Tungsheng. Loess and the Environment[M]. Beijing: China Ocean Press, 1987.
[3] Guo Z, Ruddiman W F, Hao Q Z, et al. Onset of Asian desertification by 22 Ma ago inferred from loess deposis in China[J]. Nature, 2002, 416: 159-163.
[4] Kraus M J. Paleosols in clastic sedimentary rocks: Their geologic applications[J]. Earth Science Reviews, 1999, 47: 41-70.
[5] Nettleton W D, Olson C G, Wysocki D A. Paleosol classification: Problems and solutions[J]. Catena, 2000, 41: 61 92.
[6] Ye Liangmiao, Qiu Yi'nan. Fluvial palaeosols and its application on the correlation of fluvial deposits[J]. Acta Sedimentologica Sinica, 1991, 9(2):63-70. [叶良苗,裘亦楠. 河流相古土壤及其在河流沉积地层对比中的应用[J]. 沉积学报, 1991, 9(2): 63-70.]
[7] Yin Guoxun, Zhang Hanrui. Features and significance of paleosols from the Upper Trassic of Jiyuan, Henan[J]. Journal of Stratigraphy, 1996, 20(2):128-133. [尹国勋,张汉瑞. 济源上三叠统古土壤及其意义[J]. 地层学杂志, 1996, 20(2): 128-133.]
[8] Buck B J, Mack G H. Latest Cretaceous (Maastrichtian) aridity indicated by paleosols in the McRae formation, south-central New Mexico[J]. Cretaceous Research, 1995, 16: 559-572.
[9] Günster N, Skowronek A. Sediment-soil sequences in the Granada Basin as evidence for long-and short-term climatic changes during the Pliocene and Quaternary in the Western Mediterranean[J]. Quaternary International, 2001, 78: 17-32.
[10] lvaro J J, Van Vliet-Lanoë B, Vennin E, et al. Lower Cambrian paleosols from the Cantabrian mountains (northern Spain): A comparison with Neogene Quaternary estuarine analogues[J]. Sedimentary Geology, 2003, 163: 67-84.
[11] Usai M R, Dalrymple J B. Characteristics of silica-rich pedofeatures in a buried paleosol[J]. Catena, 2003, 54: 557-571.
[12] Retallack G J, Alonso-Zarza A M. Middle Triassic paleosols and paleoclimate of Antarctica[J]. Journal of Sedimentary Research, 1998, 68: 169-184.
[13] Huang Chengmin, Wang Chengshan, Li Yalin, et al. Differentiation of paleosols from sediments in late tertiary period of Wudaoliang stratigraphic section in Qinghai plateau[J]. Journal of Mountain Science, 2003, 21(4): 428-434. [黄成敏, 王成善, 李亚林,等. 青海省五道梁地层剖面晚第三系沉积物与古土壤辨析[J]. 山地学报, 2003, 21(4): 428-434.]
[14] Retallack G J. Early forest soils and their role in Devonian global change[J]. Science, 1997, 276:583-585.
[15] Retallack G J, Sheldon N D, Cogoini M, et al. Magnetic susceptibility of early Paleozoic and Precambrian paleosols[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 198: 373-380.
[16] Institute of Soil Science, Chinese Academy of Sciences. Chinese Soil Taxonomy[M]. Beijing & New York: Science Press, 2001.
[17] Retallack G J. Classification of paleosols: Discussion and reply[J]. Geological Society of America Bulletin, 1993, 105:1 635-1 636.
[18] Retallack G J. Adapting Soil Taxonomy for use with paleosols[J]. Quaternary International, 1998, 51/52: 55-57.
[19] Mack G H, James W C, Monger H C. Classification of paleosols[J]. Geological Society of America Bulletin, 1993, 105: 129-136.
[20] Nettleton W D, Brasher B R, Benham E C, et al. A classification system for buried paleosols[J]. Quaternary International, 1998, 51/52: 175-183.
[21] Tabor N J, Montanez I P, Southard R J. Paleoenvironmental reconstruction from chemical and isotopic compositions of Permo-Pennsylvanian pedogenic minerals[J]. Geochimica et Cosmochimica Acta, 2002, 66:3 093-3 107.
[22] Demko T M, Currie B S, Nicoll K A. Regional paleoclimatic and stratigraphic implications of paleosols and fluvial/overbank architecture in the Morrison Formation (Upper Jurassic), Western Interior, USA[J]. Sedimentary Geology, 2004, 167: 115-135.
[23] Ghosh P. Geomorphology and palaeoclimatology of some Upper Cretaceous palaeosols in central India[J]. Sedimentary Geology, 1997,110:25-49.
[24] Paik I S, Kim H J, Park K H, et al. Palaeoenvironments and taphonomic preservation of dinosaur bone-bearing deposits in the Lower Cretaceous Hasandong formation, Korea[J]. Cretaceous Research, 2001, 22: 627-642.
[25] Retallack G J. Late Oligocene bunch grassland and early Miocene sod grassland paleosols from central Oregon, USA[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 207:203-237.
[26] Satoshi Utsunomiya, Takashi Murakami, Masami Nakada, et al. Iron oxidation state of a 2.45-Byr-old paleosol developed on mafic volcanics[J]. Geochimica et Cosmochimica Acta, 2003, 67: 213-221.
[27] Yang W, Holland H D, Rye R. Evidence for low or no oxygen in the late Archean atmosphere from the 2.76 Ga Mt. Roe #2 paleosol, Western Australia: Part 3[J]. Geochimica et Cosmochimica Acta, 2002, 66: 3 707-3 718.
[28] Rye R, Holland H D. Paleosols and the evolution of atmospheric oxygen: A critic review[J]. American Journal of Science, 1998, 298: 621-672.
[29] Yumiko Watanabe, Brian W Stewart, Hiroshi Ohmoto. Organic- and carbonate-rich soil formation 2.6 billion years ago at Schagen, East Transvaal district, South Africa[J]. Geochimica et Cosmochimica Acta, 2004, 68:2 129-2 151.
[30] Yoko Nedachi, Munetomo Nedachi, Gerald Bennett, et al. Geochemistry and mineralogy of the 2.45 Ga Pronto paleosols, Ontario, Canada[J]. Chemical Geology, 2005, 214: 21-44.
[31] Prasad N, Roscoe S M. Evidence of anoxoic to oxic atmospheric change during 2.45-2.22 Ga from lower and upper sub-huronian Paleosols, Canada[J]. Catena, 1996, 27: 105-121.
[32] Cerling T E. Carbon dioxide in the atmosphere: evidence from Cenozoic and Mesozoic Paleosols[J]. American Journal of Science, 1991, 291: 377-400.
[33] Cerling T E, Solomon D K, Quade J, et al. On the isotopic composition of carbon in soil carbon dioxide[J]. Geochimica et Cosmochimica Acta, 1991, 55: 3 403-3 405.
[34] Ekart D D, Cerling T E, Montanez I P, et al. 400 million year carbon isotope record of pedogenic carbonate: Implications for paleoatmospheric carbon dioxide[J]. American Journal of Science, 1999, 299: 805-827.
[35] Nordt L, Atchley S, Dworkin S I. Paleosol barometer indicates extreme fluctuations in atmospheric CO2 across the Cretaceous-Tertiary boundary[J]. Geology, 2002,30:703-706.
[36] Mora C I, Driese S G, Colarusso L A. Middle to late Paleozoic atmospheric CO2 levels from soil carbonate and organic matter[J]. Science, 1996, 271:1 105-1 107.
[37] Berner R A. The rise of trees and their effects on Paleozoic atmospheric CO2 and O2[J]. Comptes Rendus Geoscience,2003,335:1 173-1 177.
[38] Ghosh Pr, Ghosh P, Bhattacharya S K. CO2 levels in the Late Palaeozoic and Mesozoic atmosphere from soil carbonate and organic matter, Satpura basin, Central India[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001,170: 219-230.
[39] Berner R A. GEOCARB Ⅱ: A revised model of atmospheric CO2 over Phanerozoic time[J]. American Journal of Science, 1994, 294: 56-91.
[40] Lee Y I, Hisada K. Stable isotopic composition of pedogenic carbonates of the Early Cretaceous Shimonoseki Subgroup, western Honshu, Japan[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 153: 127-138.
[41] Lee Y I. Stable isotopic composition of calcic paleosols of the Early Cretaceous Hasandong formation, southeastern Korea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999,150: 123-133.
[42] Ghosh P, Bhattacharya S K, Jani R A, et al. Palaeoclimate and palaeovegetation in central India during the Upper Cretaceous based on stable isotope composition of the palaeosol carbonates[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1995, 114: 285-296.
[43] Yapp C J, Poths H. Ancient atmospheric CO2 pressures inferred from natural goethites[J]. Nature, 1992, 355: 342-344.
[44] Yapp C J. Fe(CO3)OH in goethite from a mid-latitude North American Oxisol: Estimate of atmospheric CO2 concentration in the Early Eocene "climatic optimum" [J]. Geochimica et Cosmochimica Acta, 2004, 68: 935-947.
[45] Rossetti D F. Paleosurfaces from northeastern Amazonia as a key for reconstructing paleolandscapes and understanding weathering products[J]. Sedimentary Geology,2004,169: 151-174.
[46] Zeese R. Tertiary weathering profiles in central Nigeria as indicators of paleoenvironmental conditions[J]. Geomorphology, 1996,16: 61-70.
[47] Therrien F. Palaeoenvironments of the latest Cretaceous (Maastrichtian) dinosaurs of Romania: Insights from fluvial deposits and paleosols of the Transylvanian and Hateg basins[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 218:15-56.
[48] Van Itterbeeck J, Sasaran E, Codrea V, et al. Sedimentology of the Upper Cretaceous mammal- and dinosaur-bearing sites along the raul Mare and Barbat rivers, Hateg basin, Romania[J]. Cretaceous Research, 2004, 25:517-530.
[49] Ufnar D F, Gonzalez L A, Ludvigson G A, et al. Stratigraphic implications of meteoric sphaerosiderite δ18O values in paleosols of the Cretaceous (Albian) Boulder Creek formation, NE British Columbia foothills, Canada[J]. Journal of Sedimentary Research, 2001, 71:1 017-1 028.
[50] Retallack G J. Earliest Triassic claystone breccias and soil-erosion crisis[J]. Journal of Sedimentary Research, 2005, 75: 679-695.
[51] Reuter G. A logical system of paleopedological terms[J]. Catena, 2000, 41: 93-109.
[52] Huang Chengmin, Wang Chengshan, Ai Nanshan. Implication and application of stable carbon and oxygen isotopes of pedogenic carbonates in soils[J]. Advances in Earth Science, 2003, 18(4): 619-625. [黄成敏,王成善,艾南山. 土壤次生碳酸盐碳氧稳定同位素古环境意义及应用[J]. 地球科学进展, 2003, 18(4): 619-625.]
[53] Robinson S A, Andrews J E, Hesselbo S P, et al. Atmospheric pCO2 and depositional environment from stable-isotope geochemistry of calcrete nodules (Barremian, Lower Cretaceous, Wealden Beds, England) [J]. Journal of the Geological Society, 2002, 159: 215-224.
|