地球科学进展 ›› 2006, Vol. 21 ›› Issue (9): 911 -917. doi: 10.11867/j.issn.1001-8166.2006.09.0911

综述与评述 上一篇    下一篇

晚第三纪以前形成古土壤的鉴别、分类及其在古环境研究中的应用
黄成敏 1,王成善 2   
  1. 1.四川大学建筑与环境学院环境科学与工程系,四川 成都 610065;2.中国地质大学地球科学与资源学院,北京 100083
  • 收稿日期:2006-02-27 修回日期:2006-08-30 出版日期:2006-09-15
  • 通讯作者: 王成善(1951-),男,黑龙江省哈尔滨人,教授,主要从事沉积地质学与青藏高原地质研究. E-mail:chshwang@cugb.edu.cn
  • 基金资助:

    国家重点基础研究发展计划项目“白垩纪重大地质事件与温室气候变化综合研究”(编号:2006CB701406)资助.

Identification, Classification and Application in Paleoenvironment Research of Pre-Neogene Paleosols 

Huang Chengmin 1,Wang Chengshan 2   

  1. 1.Department of Environmental Science & Engineering, School of Architecture and Environment, Sichuan University, Chengdu 610065, China;2. China University of Geosciences, School of Earth Sciences and Resources, Beijing 100083, China
  • Received:2006-02-27 Revised:2006-08-30 Online:2006-09-15 Published:2006-09-15

晚第三纪以前形成的古土壤可以揭示地质时期的古环境。辨识古土壤的主要标志包括野外形态特征、微形态特征、地球化学特征等。当前古土壤分类一般基于现代土壤的系统分类体系,即采用诊断层和诊断特征,辅之以古土壤总体的化学性质等指标划分古土壤类型。形成于晚第三纪以前的古土壤可以重建全球范围的古气候变化历史,同时揭示前寒武纪时期古大气O2分压以及后寒武纪时期古大气CO2浓度水平的演化过程;古土壤具有空间和时间等多重信息,能反映流域或区域的古景观、古地貌、古水文特征。但目前缺乏一个广为接受的古土壤分类系统,成岩作用对古土壤特征的影响以及古土壤记录的古环境信息机制与解译等方面也还需要深入探讨。今后必须加强成岩作用对古土壤特性的影响以及现代土壤与其环境的对应关系的研究。

pre-Neogene paleosols can reveal paleoenvironment during geological times. Paleosols were identified by field morphological, micromorphological, geochemical features, and so on. Currently, paleosols are classified based on taxonomic classification of modern soils, i.e, such indices as diagnostic horizons and diagnostic features, in conjunction with bulk chemical properties of paleosols etc., were employed to sort paleosols. By using paleosols, the history of ancient paleoclimate change might be reconstructed while variation of atmospheric pressure of oxygen and level of carbon dioxide concentration during pre-Cambrian and post-Cambrian periods, as well as paleoecological, paleogeographic features and paleolandscape were rebuilt. However, several problems should be tackled, e.g. establishing an extensively acceptable paleosol classification system, eliminating diagenetic effects on the properties of buried paleosols, and improving the research on the mechanism of paleoclimate information recorded by paleosols and its interpretation, etc. The further studies on diagenetic effects on the properties of buried paleosols and the elaborate relationship between modern soils and pedogenetic environment should be intensified.

中图分类号: 

[1] Retallack G J. Soils of the Past[M]. London: Unwin Hyman, 2001.

[2] Liu Tungsheng. Loess and the Environment[M]. Beijing: China Ocean Press, 1987.

[3] Guo Z, Ruddiman W F, Hao Q Z, et al. Onset of Asian desertification by 22 Ma ago inferred from loess deposis in China[J]. Nature, 2002, 416: 159-163.

[4] Kraus M J. Paleosols in clastic sedimentary rocks: Their geologic applications[J]. Earth Science Reviews, 1999, 47: 41-70.

[5] Nettleton W D, Olson C G, Wysocki D A. Paleosol classification: Problems and solutions[J]. Catena, 2000, 41: 61 92.

[6] Ye Liangmiao, Qiu Yi'nan. Fluvial palaeosols and its application on the correlation of fluvial deposits[J]. Acta Sedimentologica Sinica, 1991, 9(2):63-70. [叶良苗,裘亦楠. 河流相古土壤及其在河流沉积地层对比中的应用[J]. 沉积学报, 1991, 9(2): 63-70.]

[7] Yin Guoxun, Zhang Hanrui. Features and significance of paleosols from the Upper Trassic of Jiyuan, Henan[J]. Journal of Stratigraphy, 1996, 20(2):128-133. [尹国勋,张汉瑞. 济源上三叠统古土壤及其意义[J]. 地层学杂志, 1996, 20(2): 128-133.]

[8] Buck B J, Mack G H. Latest Cretaceous (Maastrichtian) aridity indicated by paleosols in the McRae formation, south-central New Mexico[J]. Cretaceous Research, 1995, 16: 559-572.

[9] Günster N, Skowronek A. Sediment-soil sequences in the Granada Basin as evidence for long-and short-term climatic changes during the Pliocene and Quaternary in the Western Mediterranean[J]. Quaternary International, 2001, 78: 17-32.

[10] lvaro J J, Van Vliet-Lanoë B, Vennin E, et al. Lower Cambrian paleosols from the Cantabrian mountains (northern Spain): A comparison with Neogene Quaternary estuarine analogues[J]. Sedimentary Geology, 2003, 163: 67-84.

[11] Usai M R, Dalrymple J B. Characteristics of silica-rich pedofeatures in a buried paleosol[J]. Catena, 2003, 54: 557-571.

[12] Retallack G J, Alonso-Zarza A M. Middle Triassic paleosols and paleoclimate of Antarctica[J]. Journal of Sedimentary Research, 1998, 68: 169-184.

[13] Huang Chengmin, Wang Chengshan, Li Yalin, et al. Differentiation of paleosols from sediments in late tertiary period of Wudaoliang stratigraphic section in Qinghai plateau[J]. Journal of Mountain Science, 2003, 21(4): 428-434. [黄成敏, 王成善, 李亚林,. 青海省五道梁地层剖面晚第三系沉积物与古土壤辨析[J]. 山地学报, 2003, 21(4): 428-434.]

[14] Retallack G J. Early forest soils and their role in Devonian global change[J]. Science, 1997, 276:583-585.

[15] Retallack G J, Sheldon N D, Cogoini M, et al. Magnetic susceptibility of early Paleozoic and Precambrian paleosols[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 198: 373-380.

[16] Institute of Soil Science, Chinese Academy of Sciences. Chinese Soil Taxonomy[M]. Beijing & New York: Science Press, 2001.

[17] Retallack G J. Classification of paleosols: Discussion and reply[J]. Geological Society of America Bulletin, 1993, 105:1 635-1 636.

[18] Retallack G J. Adapting Soil Taxonomy for use with paleosols[J]. Quaternary International, 1998, 51/52: 55-57.

[19] Mack G H, James W C, Monger H C. Classification of paleosols[J]. Geological Society of America Bulletin, 1993, 105: 129-136.

[20] Nettleton W D, Brasher B R, Benham E C, et al. A classification system for buried paleosols[J]. Quaternary International, 1998, 51/52: 175-183.

[21] Tabor N J, Montanez I P, Southard R J. Paleoenvironmental reconstruction from chemical and isotopic compositions of Permo-Pennsylvanian pedogenic minerals[J]. Geochimica et Cosmochimica Acta, 2002, 66:3 093-3 107.

[22] Demko T M, Currie B S, Nicoll K A. Regional paleoclimatic and stratigraphic implications of paleosols and fluvial/overbank  architecture in the Morrison Formation (Upper Jurassic), Western Interior, USA[J]. Sedimentary Geology, 2004, 167: 115-135.

[23] Ghosh P. Geomorphology and palaeoclimatology of some Upper Cretaceous palaeosols in central India[J]. Sedimentary Geology, 1997,110:25-49.

[24] Paik I S, Kim H J, Park K H, et al. Palaeoenvironments and taphonomic preservation of dinosaur bone-bearing deposits in the Lower Cretaceous Hasandong formation, Korea[J]. Cretaceous Research, 2001, 22: 627-642.

[25] Retallack G J. Late Oligocene bunch grassland and early Miocene sod grassland paleosols from central Oregon, USA[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 207:203-237.

[26] Satoshi Utsunomiya, Takashi Murakami, Masami Nakada, et al. Iron oxidation state of a 2.45-Byr-old paleosol  developed on mafic volcanics[J]. Geochimica et Cosmochimica Acta, 2003, 67: 213-221.

[27] Yang W, Holland H D, Rye R. Evidence for low or no oxygen in the late Archean atmosphere from the 2.76 Ga Mt. Roe #2 paleosol, Western Australia: Part 3[J]. Geochimica et Cosmochimica Acta, 2002, 66: 3 707-3 718.

[28] Rye R, Holland H D. Paleosols and the evolution of atmospheric oxygen: A critic review[J]. American Journal of Science, 1998, 298: 621-672.

[29] Yumiko Watanabe, Brian W Stewart, Hiroshi Ohmoto. Organic- and carbonate-rich soil formation 2.6 billion years ago at Schagen, East Transvaal district, South Africa[J]. Geochimica et Cosmochimica Acta, 2004, 68:2 129-2 151.

[30] Yoko Nedachi, Munetomo Nedachi, Gerald Bennett, et al. Geochemistry and mineralogy of the 2.45 Ga Pronto paleosols, Ontario, Canada[J]. Chemical Geology, 2005, 214: 21-44.

[31] Prasad N, Roscoe S M. Evidence of anoxoic to oxic atmospheric change during 2.45-2.22 Ga from lower and upper sub-huronian Paleosols, Canada[J]. Catena, 1996, 27: 105-121.

[32] Cerling T E. Carbon dioxide in the atmosphere: evidence from Cenozoic and Mesozoic Paleosols[J]. American Journal of Science, 1991, 291: 377-400.

[33] Cerling T E, Solomon D K, Quade J, et al. On the isotopic composition of carbon in soil carbon dioxide[J]. Geochimica et Cosmochimica Acta, 1991, 55: 3 403-3 405.

[34] Ekart D D, Cerling T E, Montanez I P, et al. 400 million year carbon isotope record of pedogenic carbonate: Implications for paleoatmospheric carbon dioxide[J]. American Journal of Science, 1999, 299: 805-827.

[35] Nordt L, Atchley S, Dworkin S I. Paleosol barometer indicates extreme fluctuations in atmospheric CO2 across the Cretaceous-Tertiary boundary[J]. Geology, 2002,30:703-706.

[36] Mora C I, Driese S G, Colarusso L A. Middle to late Paleozoic atmospheric CO2 levels from soil carbonate and organic matter[J]. Science, 1996, 271:1 105-1 107.

[37] Berner R A. The rise of trees and their effects on Paleozoic atmospheric CO2 and O2[J]. Comptes Rendus Geoscience,2003,335:1 173-1 177.

[38] Ghosh Pr, Ghosh P, Bhattacharya S K. CO2 levels in the Late Palaeozoic and Mesozoic atmosphere from soil carbonate and organic matter, Satpura basin, Central India[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001,170: 219-230.

[39] Berner R A. GEOCARB : A revised model of atmospheric CO2 over Phanerozoic time[J]. American Journal of Science, 1994, 294: 56-91.

[40] Lee Y I, Hisada K. Stable isotopic composition of pedogenic carbonates of the Early Cretaceous Shimonoseki Subgroup, western Honshu, Japan[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 153: 127-138.

[41] Lee Y I. Stable isotopic composition of calcic paleosols of the Early Cretaceous Hasandong formation, southeastern Korea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999,150: 123-133.

[42] Ghosh P, Bhattacharya S K, Jani R A, et al. Palaeoclimate and palaeovegetation in central India during the Upper Cretaceous based on stable isotope composition of the palaeosol carbonates[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1995, 114: 285-296.

[43] Yapp C J, Poths H. Ancient atmospheric CO2 pressures inferred from natural goethites[J]. Nature, 1992, 355: 342-344.

[44] Yapp C J. Fe(CO3)OH in goethite from a mid-latitude North American Oxisol: Estimate of atmospheric CO2 concentration in the Early Eocene "climatic optimum" [J]. Geochimica et Cosmochimica Acta, 2004, 68: 935-947.

[45] Rossetti D F. Paleosurfaces from northeastern Amazonia as a key for reconstructing paleolandscapes and understanding weathering products[J]. Sedimentary Geology,2004,169: 151-174.

[46] Zeese R. Tertiary weathering profiles in central Nigeria as indicators of paleoenvironmental conditions[J]. Geomorphology, 1996,16: 61-70.

[47] Therrien F. Palaeoenvironments of the latest Cretaceous (Maastrichtian) dinosaurs of Romania: Insights from fluvial deposits and paleosols of the Transylvanian and Hateg basins[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 218:15-56.

[48] Van Itterbeeck J, Sasaran E, Codrea V, et al. Sedimentology of the Upper Cretaceous mammal- and dinosaur-bearing sites along the raul Mare and Barbat rivers, Hateg basin, Romania[J]. Cretaceous Research, 2004, 25:517-530.

[49] Ufnar D F, Gonzalez L A, Ludvigson G A, et al. Stratigraphic implications of meteoric sphaerosiderite δ18O values in paleosols of the Cretaceous (Albian) Boulder Creek formation, NE British Columbia foothills, Canada[J]. Journal of Sedimentary Research, 2001, 71:1 017-1 028.

[50] Retallack G J. Earliest Triassic claystone breccias and soil-erosion crisis[J]. Journal of Sedimentary Research, 2005, 75: 679-695.

[51] Reuter G. A logical system of paleopedological terms[J]. Catena, 2000, 41: 93-109.

[52] Huang Chengmin, Wang Chengshan, Ai Nanshan. Implication and application of stable carbon and oxygen isotopes of pedogenic carbonates in soils[J]. Advances in Earth Science, 2003, 18(4): 619-625. [黄成敏,王成善,艾南山. 土壤次生碳酸盐碳氧稳定同位素古环境意义及应用[J]. 地球科学进展, 2003, 18(4): 619-625.]

[53] Robinson S A, Andrews J E, Hesselbo S P, et al. Atmospheric pCO2 and depositional environment from stable-isotope geochemistry of calcrete nodules (Barremian, Lower Cretaceous, Wealden Beds, England) [J]. Journal of the Geological Society, 2002, 159: 215-224.

 

[1] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[2] 武雪超, 郝青振, Marković Slobodan B, 付玉, 娜米尔, 宋扬, 郭正堂. 多瑙河黄土与古环境研究进展[J]. 地球科学进展, 2020, 35(4): 363-377.
[3] 陈立雷,李凤,刘健. 海洋沉积物中 GDGTs和长链二醇的古气候—环境指示意义研究进展[J]. 地球科学进展, 2019, 34(8): 855-867.
[4] 王鑫,张金辉,贾佳,王蜜,王强,陈建徽,王飞,李再军,陈发虎. 中亚干旱区第四系黄土和干旱环境研究进展[J]. 地球科学进展, 2019, 34(1): 34-47.
[5] 宗秀兰, 宋友桂, 李越. 蚯蚓方解石颗粒——一种新的古气候信息记录载体[J]. 地球科学进展, 2018, 33(9): 983-993.
[6] 王兆夺, 黄春长, 周亚利, 庞奖励, 查小春. 关中东部全新世黄土—古土壤序列粒度组分变化特征及古气候意义[J]. 地球科学进展, 2018, 33(3): 293-304.
[7] 李兴文, 张鹏, 强小科, 敖红. 三门峡会兴沟剖面黄土—古土壤序列的岩石磁学研究[J]. 地球科学进展, 2017, 32(5): 513-523.
[8] 王瑞, 余克服, 王英辉, 边立曾. 珊瑚礁的成岩作用[J]. 地球科学进展, 2017, 32(3): 221-233.
[9] 吕璇, 刘志飞. 大洋红层的分布、组成及其科学研究意义综述[J]. 地球科学进展, 2017, 32(12): 1307-1318.
[10] 黄伟, 刘殿兵, 王璐瑶, 张振球. 洞穴石笋δ 13C在古气候重建研究中的现状与进展[J]. 地球科学进展, 2016, 31(9): 968-983.
[11] 胡玉, 陈建徽, 王海鹏, 吕飞亚, 魏国英. 基于摇蚊的古环境和古气候国内外研究进展与展望[J]. 地球科学进展, 2016, 31(8): 870-884.
[12] 刘华华, 蒋富清, 周烨, 李安春. 晚更新世以来奄美三角盆地黏土矿物的来源及其对古气候的指示[J]. 地球科学进展, 2016, 31(3): 286-297.
[13] 周烨, 蒋富清, 南青云, 刘华华, 李安春. 奄美三角盆地晚更新世以来碎屑沉积物粒度特征及其物源和古气候意义[J]. 地球科学进展, 2016, 31(3): 298-309.
[14] 马天鸣, 谢周清, 李院生. 极地冰芯电学性质及导电测量技术研究进展[J]. 地球科学进展, 2016, 31(2): 161-170.
[15] 梁文癸, 闻新宇. 古AO/NAO的研究进展[J]. 地球科学进展, 2016, 31(11): 1137-1150.
阅读次数
全文


摘要