Please wait a minute...
img img
高级检索
地球科学进展  2006, Vol. 21 Issue (2): 201-210    DOI: 10.11867/j.issn.1001-8166.2006.02.0201
“土地利用/覆盖变化与综合减灾”专辑     
巨大灾害后的脆弱性:台湾集集地震后中部地区土地利用与覆盖变迁
林冠慧,张长义
台湾大学地理环境资源学系,台北 106
Vulnerability after a Devastating Hazard: An Interpretation of Land Use and Land Cover Change in Central Taiwan Since 1999 Chi-Chi Earthquake
Lin Guanhui, Zhang Changyi
Department of Geography, National Taiwan University, Taibei 106, China
 全文: PDF(205 KB)  
摘要:

    自2004年底的南亚大海啸、美国遭受飓风侵袭以来,人类社会如何采取应对措施以降低灾害的冲击成为国际科学界的一个重要议题。台湾在几年前也遭遇巨大的地震灾害,1999年9月21日凌晨,震中发源于台湾中部、芮氏规模7.3级的巨大地震,造成全台湾2 000多人死亡,8 000多人受伤,除了造成直接的经济社会损失外,也造成山区土石松滑、地层松动与山崩,直接改变了地表的覆盖状况。在后续几年台风所带来的强风豪雨下,丰沛的降雨量使原本因地震而松滑的土石大量滑落,造成严重的土石流灾害,河床也因土石泥沙的堆积而被提升,形成严重的洪患。这些自然环境的变化不仅再次改变地表的覆盖,也使重建后的小区面临极大的灾害风险。此次冲击促使当地居民重新思考人地关系之意义,通过重建过程凝聚小区意识,发展有别于过去的土地利用形态。因此为检验当地居民对灾害的暴露程度、敏感性与适应能力,本研究采用近年来在国际环境灾害研究课题备受重视的脆弱性研究途径,并利用野外调查以及遥测与地理信息系统分析呈现地震后的土地覆盖变化。希望通过分析人与环境系统的变化,以及人类社群的社会内部固有特质,归纳出重要机制以发展降低脆弱性的策略。
    研究结果显示,灾害是人与环境耦合系统(coupled system)共同形成的结果,非单一的独立事件,也不是不可避免的;且地方的脆弱性具有演化与多元化的特性,同一地方下不同族群与个体对灾害的脆弱性皆不同,因此灾害研究必须更关注于灾害发生的机制,相关的政策与策略也必须建立在更小的社会与空间单元上。

关键词: 脆弱性土地利用/覆盖地震中国台湾    
Abstract:

    Since the Indian Ocean tsunami took place on December 26, 2004, the significant outcome of a devastating hazard has occurred. Strategies that we can mitigate the impacts have been the central research theme of the international academic communities. A similar event had happened in Taiwan several years ago. On September 21, 1999, a devastating earthquake measured 7.3 on the Richter scale struck central Taiwan, and caused over 2 400 deaths and 8 000 injuries. After the earthquake, a lot of landslides occurred and had made the land use and land cover transformed.
    The purpose of this research is to interpret how people perceive a hazard and through what kind of personal, social and political mechanisms that can help them construct the resilience and adapt to the impact. It's especially significant that after the devastating earthquake, people in the impacted areas have not only adapted to the impacts, but also changed the previous land uses. Most of these areas were economically-weak agricultural and aboriginal regions, before the earthquake occurred, these areas had had high percentage of illegal and inappropriate land uses which often induced serious landslides after heavy rains. Now, six years after the earthquake, most of the previous land uses have been abandoned; environment-friendly agriculture and eco-tourism now become the major livelihood.
    In this research, we'll use remote sensing and GIS to express land use and land cover changing process during different stages, and will examine the endowment, entitlement and the social capital of the local people to deal with the impact. Our aims are to analyze the mechanism and to develop a conceptual model that could strengthen people's resilience and adaptive capacity to cope with the impacts and reduce the vulnerability.

Key words: Vulnerability    Land use/cover change    Earthquake    China    Taiwan.
收稿日期: 2005-12-20 出版日期: 2006-02-15
:  X144  
通讯作者: 林冠慧     E-mail: elaine_lin@gcc.ntu.edu.tw
作者简介: 林冠慧.E-mail: elaine_lin@gcc.ntu.edu.tw
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
林冠慧
张长义

引用本文:

林冠慧,张长义. 巨大灾害后的脆弱性:台湾集集地震后中部地区土地利用与覆盖变迁[J]. 地球科学进展, 2006, 21(2): 201-210.

Lin Guanhui, Zhang Changyi. Vulnerability after a Devastating Hazard: An Interpretation of Land Use and Land Cover Change in Central Taiwan Since 1999 Chi-Chi Earthquake. Advances in Earth Science, 2006, 21(2): 201-210.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2006.02.0201        http://www.adearth.ac.cn/CN/Y2006/V21/I2/201

[1] Adger N W, Brooks N, Bentham G, eds. New Indicators of Vulnerability and Adaptative Capacity [R]. No.7, Tyndall Centre Technical Report, 2004.

[2] Turner B L, Kasperson R E, eds. A framework for vulnerability analysis in sustainability science [J]. Proceedings of the National Academy of Sciences of the United States of America,2003, 100 (14):8 074-8 079.

[3] Turner B L. Illustrating the coupled human-environment system for vulnerability analysis: Three case studies[J]. Proceedings of the National Academy of Sciences of the United States of America,2003, 100 (14):8 080-8 085.

[4] Clark W C, Schr ter D, Ratt A, et al. Vulnerability and Resilience for Coupled Human-Environment Systems: Report of the Research and Assessment Systems for Sustainability Program 2001 Summer Study [R]. Belfer Center for Science and International Affairs (BCSIA) Cambridge, MA: Environment and Natural Resources Program, John F. Kennedy School of Government, Harvard University, 2001.

[5] Kasperson J X, Kasperson R E. SEI Risk and Vulnerability Programme Report 2001-01 [R]. Stockholm: Stockholm Environment Institute, 2001.

[6] Kasperson R E, Kasperson J X. Climate Change, Vulnerability and Social Justice [R]. Stockholm: Stockholm Environment Institute, 2001.

[7] White K S, Ahmad Q K, Anisimov O, et al. Technical Summary, Climate Change 2001: Impacts, Adaptation, and Vulnerability, a Report of Working Group II of the Intergovernmental Panel on Climate Change [M]. United Kingdom and New York:Cambridge University Press, 2001: 21-72.

[8] Watts M, Bohle H G. The space of vulnerability: The causal structure of hunger and famine[J]. Progress in Human Geography,1993, 17(1): 43-67.

[9] Water-soil Conservation Bereau. Report on the 7.2 flood induced landslip [R]. Water-soil Conservation Bereau, Agriculture Committee, Taiwan Administration Council, 2004. [台湾行政院农业委员会水保持局. 七二水灾崩塌地计划成果报告[R].2004.]

[10] Water-soil Conservation Bereau. Information on the debris flow in Song-he District [R]. Water-soil Conservation Bereau, Agriculture Committee, Taiwan Administration Council, 2004. [台湾行政院农业委员会水土保持局. 松鹤土石流现地资料搜集成果报告[R].2004.]

[1] 刘轶男, 孙凤霞, 崔月菊, 盘晓东, 马铭志, 张昕, 杜建国. 吉林省松原地区地震监测台站水化学特征[J]. 地球科学进展, 2017, 32(8): 810-817.
[2] 周晓成, 石宏宇, 陈超, 曾令华, 孙凤霞, 李静, 陈志, 吕超甲, 黄丹, 杜建国. 汶川MS8.0地震破裂带土壤气中H2浓度时空变化[J]. 地球科学进展, 2017, 32(8): 818-827.
[3] 吴绍洪, 高江波, 戴尔阜, 赵东升, 尹云鹤, 杨琳, 郑景云, 潘韬, 杨勤业. 中国陆地表层自然地域系统动态研究:思路与方案[J]. 地球科学进展, 2017, 32(6): 569-576.
[4] 陈晓龙, 周天军. 使用订正的“空间型标度”法预估1.5 ℃温升阈值下地表气温变化[J]. 地球科学进展, 2017, 32(4): 435-445.
[5] 杨占红, 罗宏, 薛婕, 张保留. 中印两国碳排放形势及目标比较研究[J]. 地球科学进展, 2016, 31(7): 764-773.
[6] 李安, 冉勇康, 刘华国, 徐良鑫. 西南天山柯坪推覆系西段全新世构造活动特征和古地震[J]. 地球科学进展, 2016, 31(4): 377-390.
[7] 张 勇, 戎志国, 闵 敏. 中国遥感卫星辐射校正场热红外通道在轨场地辐射定标方法精度评估[J]. 地球科学进展, 2016, 31(2): 171-179.
[8] 夏少红, 曹敬贺, 万奎元, 范朝焰, 孙金龙. OBS广角地震探测在海洋沉积盆地研究中的作用[J]. 地球科学进展, 2016, 31(11): 1111-1124.
[9] 崔月菊, 杜建国, 李营, 刘雷, 周晓成, 陈扬, 陈志, 韩晓昆. 张渤地震带高光谱气体地球化学特征[J]. 地球科学进展, 2016, 31(1): 59-65.
[10] 丁文龙, 王兴华, 胡秋嘉, 尹帅, 曹翔宇, 刘建军. 致密砂岩储层裂缝研究进展[J]. 地球科学进展, 2015, 30(7): 737-750.
[11] 杨建平, 丁永建, 方一平, 秦大河. 冰冻圈及其变化的脆弱性与适应研究体系[J]. 地球科学进展, 2015, 30(5): 517-529.
[12] 任诗鹤, 王辉, 刘娜. 中国近海海洋锋和锋面预报研究进展[J]. 地球科学进展, 2015, 30(5): 552-563.
[13] 艾丽坤, 王晓毅. 全球变化研究中自然科学和社会科学协同方法的探讨[J]. 地球科学进展, 2015, 30(11): 1278-1286.
[14] 陆大道. 辉煌的成就,更高的使命——写在第33届国际地理学大会在北京召开之前[J]. 地球科学进展, 2015, 30(10): 1075-1080.
[15] 杨扬, 马劲风, 李琳. CO2地质封存四维多分量地震监测技术进展[J]. 地球科学进展, 2015, 30(10): 1119-1126.