地球科学进展 ›› 2005, Vol. 20 ›› Issue (3): 359 -365. doi: 10.11867/j.issn.1001-8166.2005.03.0359

研究论文 上一篇    下一篇

中国浅海贝藻养殖对海洋碳循环的贡献
张继红,方建光,唐启升   
  1. 农业部海洋渔业资源可持续利用重点开放实验室,中国水产科学研究院黄海水产研究所,山东 青岛 266071
  • 收稿日期:2005-01-18 修回日期:2005-03-02 出版日期:2005-03-25
  • 通讯作者: 唐启升(1943-),男,辽宁大连人,研究员,中国工程院院士,主要从事海洋生态与资源方面的研究. E-mail:ysfri@pulic.qd.sd.cn
  • 基金资助:

    国家重点基础研究发展规划项目“东黄海海洋生态系统动力学和生物资源可持续”(编号:G19990437);国家自然科学基金项目“浅海规模化贝类养殖与环境相互作用的研究”(编号:30271021)资助

THE CONTRIBUTION OF SHELLFISH AND SEAWEED MARICULTURE IN CHINA TO THE CARBON CYCLE OF COASTAL ECOSYSTEM

ZHANG Jihong; FANG Jianguang; TANG Qisheng   

  1. Key Laboratory for Sustainable Utilization of Marine Fisheries Resource, Ministry of Agriculture,Yellow Sea Fisheries Research Institute, Qingdao 266071,China
  • Received:2005-01-18 Revised:2005-03-02 Online:2005-03-25 Published:2005-03-25

中国是浅海贝藻养殖的第一大国,年产量超过1 000万t。根据贝藻养殖产量、贝藻体内碳元素的含量及其贝类能量收支,推算出2002年中国海水养殖的贝类和藻类使浅海生态系统的碳可达300多万t,并通过收获从海中移出至少120万t的碳。该结果不仅为探讨全球“遗漏的碳汇”问题提供了一个新的线索,同时也证明了浅海的贝类和藻类养殖活动直接或间接地使用了大量的海洋碳,提高了浅海生态系统吸收大气CO2的能力。另外,贝藻的养殖活动与浅海生态系统的碳循环之间关系复杂,相互作用明显,因此,它的生物地球化学过程是一个值得深入研究的科学问题。

China is the largest mariculture country of shellfish and seaweed in the world. The total annual yields of these in 2002 are more than 10 million tons. Among of which, the yields of seaweed and shellfish are 1.3 and 9.7 million tons, respectively. Seaweeds can transform dissolved inorganic carbon into organic carbon by photosynthesis; filtering shellfish can clear out particle organic carbon by feeding activity and through the process of calcification a lot of carbon can be imbedded into the shells at the form of CaCO3. Especially, a mass of carbons can be removed out of ocean through harvest, which must have great influence on the carbon cycle of coastal ecosystem. Through the activity of shellfish and seaweed mariculture, there were more than 3 million tons carbon being utilized and about 1.2 million tons carbon being taken away from the shallow sea by harvesting, which is calcultated basing on the data of annual production, the C content of both shellfish and seaweed and the energy budget of shellfish. Most important was that there were about 670000 tons carbon were fixed by shells and became the long-term carbon sink. The result not only discusses a new clue for probing into the question of “missing sink” in the global carbon cycle, but also testifies that the aquaculture of shellfish and seaweed in the coastal ocean can utilize a great deal of oceanic carbon directly or indirectly and improve the capacity of shallow sea absorbing atmospheric CO2. In addition, the relationship between the aquaculture and the carbon cycle of the coastal ecosystem is very complicated and its interaction is evident, consequently, its biogeochemical process should be paid great attention for further and deeply study as a science problem.

中图分类号: 

 [1] Beatriz M B, Michael J R F , Margaret C B. Ocean biogeochemistry and global change: JGOFS research highlights 1988-2000 [J]. IGBP Science, 2001, 2: 1-32.
 [2] Frankignoulle M, Borges A V. European continental shelf as a significant sink for atmospheric carbon dioxide [J]. Global Biogeochemical Cycles, 2001,15: 569-576.
 [3] Thomas H, Bozec Y, Elkalay K, et al. Enhanced open ocean storage of CO2 from shelf sea pumping[J]. Science, 2004, 304: 1 005-1 008.
 [4] Liu K K, Atkinson L, Chen C T A, et al. Exploring continental margin carbon fluxes on a global scale[J]. The Earth Observing System, Transactions, American Geophysical Union, 2000, 81: 641-644.
 [5] Cai W J, Dai M H. Comment on “Enhanced open ocean storage of CO2 from shelf sea pumping”[J]. Science, 2004, 306: 1 477.
 [6] Hu Dunxin. Study on Chinese ocean flux[J]. Advances in Earth Science, 1996, 11(2): 227-229.[胡敦欣. 我国的海洋通量研究[J]. 地球科学进展, 1996, 11(2): 227-229].
 [7] Tsunogai S, Watanabe S, Sato T. Is there a continental shelf pump for the absorption of atmospheric CO2?[J]. Tellus B, 1999, 51: 701-712.
 [8] Coates D. Aquaculture production:Quantities 1950-2002 [EB/OL]. Ftp.fao.org/fi/stat/windows/fishplus/aquaq.zip,2002.
 [9] Shen Zhenzhao, Zhang Hecheng. China Fisheries Yearbook[M]. Beijing: China Agriculture Press, 2002.[沈镇昭,张合成主编. 中国渔业统计年鉴 [M]. 北京: 中国农业出版社, 2002.]
 [10] Gao K S, Mckinley K R. Use of macroalgae for marine biomass production and CO2 remediation[J]. Journal of Applied Phycology, 1994, 6: 45-60.
 [11] Flynn K J. Algal carbon-nitrogen metabolism: A biochemical basis for modeling the interations between nitrate and ammonium uptake[J]. Journal of Plankton Research, 1991, 13(2): 373-387.
 [12] Rivkin R B. phytoadaptation in marine phytoplankton: Variations in ribulose 1,5-bisphisphate activity[J]. Marine Ecology Progress Series, 1990, 62: 61-72.
 [13] Mao Xinghua, Zhu Mingyuan, Yang Xiaolong. The photosynthesis and productivity of benthic macrophytes in Sanggou Bay[J]. Acta Ecologica Sinica, 1993, 13(1): 25-29.[毛兴华,朱明远,杨小龙.桑沟湾大型底栖植物的光合作用和生产力的初步研究[J]. 生态学报, 1993, 13(1): 25-29.]
 [14] Lapointe B E, Littler M M, Littler D S. Nutrient availability to marine macroalgae in siliciclastic versus carbonate-rich coastal waters[J]. Estuaries, 1992, 15(1): 75-82.
 [15] Zhou Yi, Yang Hongsheng, Liu Shilin, et al. Chemical composition and net organic production of cultivated and fouling organisms in Sishili Bay and their ecological effects[J]. Journal of fisheries of China, 2002, 26(1): 21-27.[周毅,杨红生,刘石林,等.烟台四十里湾浅海养殖生物及附着生物的化学组成、有机净生产量及其生态效应 [J].水产学报, 2002, 26(1): 21-27.]
 [16] Harrison P J, Druehl L D, Lloyd K E, et al. Nitrogen uptake kinetics in three year-classes of Laminaria groenlandica (Laminariales:Phaeophyta)[J]. Marine Biology, 1986, 93:29-35.
 [17] Chapman A R O, Markham J W, Lüning K. Effects of nitrate concentration on the growth and physiology of Laminaria saccharina (Phaeophyta) in culture[J]. Journal of Phycology, 1978,14(2):195-198.
 [18] Ahn O, Petrell R J, Harrison P J. Ammonium and nitrate uptake by Laminaria saccharina and Nereocystis luetkeana originating from a salmon sea cage farm[J]. Journal of Applied Phycology, 1998,10: 333-340.
 [19] Rosenberg G, Probyn T A. Nutrient uptake and growth kinetics in brown seaweeds: Response to continuous and single additions of ammonium[J]. Journal of Experimental Marine Biology and Ecology, 1984, 80:125-146.
 [20] Chauvaud L, Thompson K J, Cloern J E. Clams as CO2 generators: The Potamocorbula amurensis example in San Francisco Bay [J]. Limnology Oceanography, 2003, 48(2): 2 086-2 092.
 [21] Young Ahn. Enhanced particle flux through the biodeposition by the Antarctic suspension-feeding bivalve Laternula elliptica in Marian Cove,King George Island[J]. Journal of Experimental Marine Biology and Ecology, 1993, 171:75-90.
 [22] Kaspar H F, Gillespie P A, Boyer I C, et al. Effects of mussel aquaculture on the nitrogen cycle and benthic communities in Kenepru Sounds, New Zealand[J]. Marine Biology, 1985,85: 127-136.
 [23] Nakamura Y, Kerciku F. Effects of filter-feeding bivalves on the distribution of water quality and nutrient cycling in a eutrophic coastal lagoon[J]. Journal of Marine Systems, 2000, 26:209-221.
 [24] Prins T C, Escaravage V, Smaal A C, et al. Functional and structural changes in the pelagic system induced by bivalve grazing in marine mesocosms[J]. Water Science Technique, 1995, 32(4): 183-185.
 [25] Dong Shuangling, Wang Fang, Wang Jun, et al. Effects of bay scallop on plankton and water quality of mariculture pond [J]. Acta Ceanologica Sinica, 1999, 21(6): 138-143.[董双林,王芳,王俊,等. 海湾栉孔扇贝对海水浮游生物和水质的影响[J]. 海洋学报,1999,21(6):138-143.]
 [26] Kuang Shihuan, Fang Jianguang, Sun Huiling, et al. Seasonal variation of filtration rate and assimilationefficiency of scallop Chlamys farreri in Sanggou Bay[J]. Oceanologia et Limnologia Sinica, 1996, 27(2): 194-199. [匡世焕,方建光,孙慧玲,等. 桑沟湾栉孔扇贝不同季节滤水率和同化率的比较[J]. 海洋与湖沼,1996,27(2)194-199].
 [27] Grant J, Granford P J. Carbon & nitrogen scope for growth as a function as diet in the sea scallop Placopecten magellanicus [J]. Journal of the Marine Biological Association of the United Kingdom, 1991, 71: 437-450.
 [28] Hawkins A J S, Bayne B L. Seasonal variation in the relative utilization of carbon and nitrogen by the mussel Mytilus edulis: Budgets, conversion efficiencies as maintainance requirements[J]. Marine Ecology Progress Series, 1985, 25: 181-188.
 [29] Goulletquer P, Wolowicz. The shell of Cardium edule, Cardium glaucum and Ruditapes philippinarum: Organic content, composition and energy value, as determined by different methods[J]. Journal of the Marine Biological Association of the United Kingdom, 1989, 69: 563-572. 
 [30] Huang Zongguo, Cai Ruxing. Marine Biofouling and Its Prevention[M].Beijing: China Ocean Press, 1984.61-138. [黄宗国,蔡如星. 海洋污损生物及其防除[M].北京:中国海洋出版社, 1984.61-138.][31] Karfoot T H. Animal Energetics[M]. New York : Academic Press, 1987. 89-172.
 [32] Wang Jun, Jiang Zuhui, Zhang Bo, et al. Study on energy budget of farrerid scallop (Chlamys farreri)[J]. Marine Fisheries Research, 1999, 20(2): 71-75. [王俊,姜祖辉,张波,等. 栉孔扇贝能量收支的研究[J].海洋水产研究,1999, 20(2): 71-75.]
 [33] Zhang Jihong, Fang Jianguang, Jin Xianshi, et al. Effect of energy budget of short-necked clam Ruditapes philippinarum under low temperature[J].Journal of fisheries of China, 2002,26(5):423-427. [张继红,方建光,金显仕,等. 低温对菲律宾蛤仔能量收支的影响 [J].水产学报,2002, 26(5): 423-427.]
 [34] Ropert M, Goulletquer P. Comparative physiological energetics of two suspension feeders: Polychaete annelid Lanice conchilega (Pallas 1766) and Pacific cupped oyster Crassostrea gigas (Thunberg 1795) [J]. Aquaculture, 2000,181: 171-189.
 [35] Wong W H, Cheung S G. Feeding rates and scope for growth of green mussels, Perna viridis L. and their relationship with food availability in Kat, Hong Kong[J]. Aquaculture, 2001, 193:123-137. 
[36] Arifin Z, Leah I, Bendell-Young. Cost of selective feeding by the blue mussel Mytilus trossulus as measured by respiration and ammonia excretion rates[J]. Journal of Experimental Marine Biology and Ecology, 2001, 260: 259-269.
 [37] Chen Panqin, Huang Yao , Yu Guirui. Carbon Cycle of Earth System[M]. Beijing: China Science Press, 2004. [陈泮勤,黄耀,于贵瑞. 地球系统碳循环[M]. 北京:科学出版社,2004.]
 [38] Tang Qisheng. On the carrying capacity and its study[J]. Marine Fisheries Research, 1996, 17(2): 1-6. [唐启升. 关于养殖容量及其研究 [J]. 海洋水产研究,1996, 17(2):1-6.] 
 [39] Fang Jianguang, Kuang Shihuan, Sun Huiling, et al. Study on the carrying capacity of sanggou bay for theculture of scallop Chlamys farreri [J]. Marine Fisheries Research, 1996, 17(2):18-31. [方建光,匡世焕,孙慧玲,等. 桑沟湾栉孔扇贝养殖容量的研究[J]. 海洋水产研究,1996, 17(2):18-31.]
 [40] Fang Jianguang, Sun Huiling, Kuang Shihuan et al. Assession the carrying capacity of sanggou bay for culture of kelp Laminaria japonica[J]. Marine Fisheries Research, 1996, 17(2): 7-17. [方建光,孙慧玲,匡世焕,等. 桑沟湾海带养殖容量的研究 [J]. 海洋水产研究,1996, 17(2): 7-17.]
 [41] Yang H, Zhang T, Wang J, et al. Growth characteristics of Chlamys farreri and its relation with environmental factors in intensive raft-culture areas of Sishiliwan Bay,Yan tai[J]. Journal of Shellfish Reach, 1999, 18(1): 71-76.
 [42] Zhang Zhinan, Zhou Yu, Han Jie, et al. A study on the biodeposition of bivalves with the application of annular flux system[J]. Journal of Ocean University of Qingdao, 2000, 30(2): 270-276.[张志南,周宇,韩洁,等.应用生物扰动实验系统(Annular Flux System)研究双壳类生物沉降作用 [J].青岛海洋大学学报,2000, 30(2): 270-276.]
 [43] Hatcher A, Grant J,Schofield B. Effects of suspended mussel culture (Mytilus spp.) on sedimentation [J]. Marine Ecology Progress Series, 1994, 115: 219-235.
 [44] Gilbert F, Souchu P, Bianchi M, et al. Influence of shellfish farming acitivites on nitrification, nitrate reduction to ammonium and denitrification at the water-sediment interface of the Tthau lagoon,France [J]. Marine Ecology Progress Series, 1997, 151: 143-159.
 [45] Navarro J M, Thompon R J. Biodeposition produced by horse mussel Modiolus modiolus during spring diatom bloom[J]. Journal of Experimental Marine Biology and Ecology, 1997, 209: 1-13.
 [46] Cai Lisheng, Fang Jianguang, Liang Xingming. Natural sedimentation in large-scale aquaculture areas of Sungo Bay, north China sea [J].Journal of Fishery Sciences of China, 2003, 10(4): 305-311. [蔡立胜,方建光,梁兴明.规模化浅海养殖水域沉积作用的初步研究 [J].中国水产科学,2003, 10(4): 305-311.]

[1] 李旭明,李来峰,王浩贤,王野,陈旸. 土壤中次生与碎屑组分的差异性剥蚀[J]. 地球科学进展, 2020, 35(8): 826-838.
[2] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[3] 吴泽燕,章程,蒋忠诚,罗为群,曾发明. 岩溶关键带及其碳循环研究进展[J]. 地球科学进展, 2019, 34(5): 488-498.
[4] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[5] 汪品先. 巽他陆架——淹没的亚马逊河盆地?[J]. 地球科学进展, 2017, 32(11): 1119-1125.
[6] 贾国东. 冰期出露的巽他陆架:重要的陆地碳储库?[J]. 地球科学进展, 2017, 32(11): 1157-1162.
[7] 聂红涛, 王蕊, 赵伟, 罗晓凡, 祁第, 鹿有余, 张远辉, 魏皓. 北冰洋太平洋扇区碳循环变化机制研究面临的关键科学问题与挑战[J]. 地球科学进展, 2017, 32(10): 1084-1092.
[8] 焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.
[9] 赵彬, 姚鹏, 于志刚. 有机碳—氧化铁结合对海洋环境中沉积有机碳保存的影响[J]. 地球科学进展, 2016, 31(11): 1151-1158.
[10] 吴金水, 葛体达, 祝贞科. 稻田土壤碳循环关键微生物过程的计量学调控机制探讨[J]. 地球科学进展, 2015, 30(9): 1006-1017.
[11] 焦念志, 张传伦, 谢树成, 刘纪化, 张飞. 古今结合论碳汇、见微知著识海洋 *[J]. 地球科学进展, 2014, 29(11): 1294-1297.
[12] 刘丽贞, 秦伯强, 黄琪. 淡水体系中透明胞外聚合颗粒物(TEP)的研究进展[J]. 地球科学进展, 2014, 29(10): 1149-1157.
[13] 秦蕴珊,尹宏. 西太平洋——我国深海科学研究的优先战略选区[J]. 地球科学进展, 2011, 26(3): 245-248.
[14] 陈中笑,赵琦. 全球碳循环研究中的δ 13C方法及其进展[J]. 地球科学进展, 2011, 26(11): 1225-1233.
[15] 张泓,张群,曹代勇,李小彦,李贵红,黄文辉,冯宏,靳德武,张子敏,贾建称,石智军,邵龙义,程建远,汤达祯,姜在炳. 中国煤田地质学的现状与发展战略[J]. 地球科学进展, 2010, 25(4): 343-352.
阅读次数
全文


摘要