地球科学进展 ›› 2005, Vol. 20 ›› Issue (3): 275 -271. doi: 10.11867/j.issn.1001-8166.2005.03.0275

所属专题: 青藏高原研究——青藏科考虚拟专刊

学术论文 上一篇    下一篇

冻土地区风的作用分析——以青藏铁路沿线多年冻土为例
陈继,程国栋,吴青柏,牛富俊,胡泽勇   
  1. 中国科学院寒区旱区环境与工程研究所冻土工程国家重点实验室,甘肃 兰州 730000
  • 收稿日期:2004-03-26 修回日期:2004-07-20 出版日期:2005-03-25
  • 通讯作者: 陈继 E-mail:chenji@lzb.ac.cn
  • 基金资助:

    中国科学院知识创新工程重大项目“青藏铁路工程与多年冻土相互作用及其环境效应”(编号:KZCX1-SW-04)资助.

WIND’S COOLING EFFECT ON FROZEN SOIL—FOR EXAMPLE OF QINGHAI-TIBET RAILWAY

CHEN Ji; CHENG Guodong; NIU Fujun; HU Zeyong   

  1. State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environment and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
  • Received:2004-03-26 Revised:2004-07-20 Online:2005-03-25 Published:2005-03-25

在广大的冻土地区,尤其是常年多风的冻土地区,空气与地面之间的热交换不仅仅表现为传导、自然对流和辐射。在风的作用下,地表上部空气的强制对流和表土层中的水分蒸发大大增强,对冻土层的热状况产生重要的影响。对于像青藏高原这样的冻土地区而言,地面上1.5 m处空气的年平均温度要比下附面层底的年平均温度低3~3.5℃以上;同时,对于表土层潮湿的冻土地区而言,水分的蒸发也将会带走土体中的大量热量。从冻土地区风作用的概念——冻土地区的风降低地表温度、促进下伏冻土发育的作用出发,分析了影响冻土地区风降温作用的诸多因素,给出在强风、表土含水量大的条件下,风作用表现得非常显著的结论。然后,通过对比、分析青藏铁路北麓河试验段的2个工程实例,验证了风的作用对冻土温度状况的重要影响。最后,给出了风作用在冻土地区若干基础工程实践中直接或间接的应用,以及利用风的降温作用来保护冻土的工程措施的使用条件和局限性。

In wide cold regions, especially frozen soil area with frequent wind, thermal exchange mode between Earth's surface and air does not consist of thermal conduction, natural convection and radiation. Under the action of wind, forced convection of air above ground and water evaporation of top soil layer will be greatly enhanced. They will have important effect on the ground temperature regime. Taking example of frozen soil area in Qinghai-Tibet Plateau, annual average air temperature of 1.5m above Earth’s surface is 2.5℃, lower than that of earth’s surface. At the same time, water evaporation brings away a lot of heat stored in moist top soil layer. At first, this paper focused on the concept of wind's cooling effect[WTBZ], which suggests that wind in frozen soil area can lower the temperature of earth surface and accelerate the growth of frozen soil. Many factors that affect wind's cooling effect were also analyzed briefly. Then, through comparison and analysis between the two engineering examples in the Beiluhe testing site of Qinghai-Tibet Railway, it was proved that wind has significant effect on the thermal status. Finally, this paper presented its direct and indirect application to engineering practice in cold regions, its applicability and limitation in the aspect of protecting permafrost. 

中图分类号: 

[1]Hu Yinqiao. Meteorology of boundary layer[J]. Advances in Earth Science, 1991,6(6):57-59.[胡隐樵.边界层气象学[J].地球科学进展,1991, 6(6):57-59.][2]Zhang Qiang, Hu Yinqiao. Advance of boundary layer physics and problems that it faces[J]. Advances in Earth Science, 2001,16(4):526-532.[张强, 胡隐樵. 大气边界层物理学的研究进展和面临的科学问题[J]. 地球科学进展,2001, 16(4):526-532.]
[3]Zeng Qunzhu, Kou Youguan, Xie Weirong, et al. Study on the radiation balance in Qinghai-Tibet Plateau[J]. Paper collection of Glaciology and Geocryology Institute of CAS,1982, 3:3-51.[曾群柱, 寇有观, 谢维荣,等. 青藏高原辐射平衡研究[J]. 中国科学院兰州冰川冻土所集刊, 1982, 3: 3-51. ]
[4]Wu Ziwang, Cheng Guodong, Zhu Linnan, et al. Roadbed Engineering for Permafrost[M]. Lanzhou: Publishing House of Lanzhou University, 1988.57-60.[吴紫汪, 程国栋, 朱林楠, 等. 冻土路基工程[M]. 兰州:兰州大学出版社, 1988. 57-60.]
[5]Zhu Linnan. Study on attached surface with different land cover in Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 1988, 10(1):35-39.[朱林楠. 高原冻土区不同下垫面的附面层研究[J]. 冰川冻土, 1988, 10(1): 35-39.]
[6]Zhou Youwu, Qiu Guoqing, Cheng Guodong, et al. Frozen Soil in China[M]. Beijing: Science Press, 2000.9-36.[周幼吾, 邱国庆, 程国栋, 等. 中国冻土[M]. 北京:科学出版社, 2000. 9-36.]
[7]Wu Ziwang, Lai Yuanming,Zang Enmu,et al. Tunnel Engineering in Cold Regions[M]. Beijing: Ocean Press, 2003.[吴紫汪, 赖远明, 臧恩穆,等. 寒区隧道工程[M]. 北京:海洋出版社,2003.]
[8]Wartena L  , van J H, Boxel  D  Veenhuysen. Macroclimate, microclimate and dune formation along the West European coast[J]. Landscape Ecology, 1991, 6(1): 15-27.
[9]Wang Zhonglong, Xie Weirong. Study on the evaporation of grassland in the east part of Qilian Mountain[J]. Paper collection of Glaciology and Geocryology Institute of CAS,1982, 3:77-81.[王中隆, 谢维荣. 祁连山东部山地草甸蒸发的研究[J]. 中国科学院兰州冰川冻土所集刊, 1982, 3: 77-81.]
[10]Cone V M. Hydraulic laboratory for irrigation investigations, Fort Collins[J]. Colombia Engineering News,1913, 70:662-665. 
[11]Meyer  A F. Computing run-off from rainfall and other physical data[J]. American Society of Civil Engineering Transactions,1915, 79:1 056-1 224.
[12]Jones R, Smith C C, Lf G. Measurement and Analysis of evaporation from an Inactive Outdoor Swimming Pool[A].In: Proceedings of the 1993 Annual Conference of the American Solar Energy Society[C]. Washington DC : American Solar Energy Society,1993.399.
[13]Himus  G W ,  Hinchley J W. The effect of a current of air on the rate of evaporation of water below the boiling point[J]. Chemistry and Industry, 1924, 43:840.
[14]Lurie  M, Michailoff N. Evaporation from free water surfaces[J]. Industrial and Engineering Chemistry, 1936, 28(3):345.
[15]Jia Yubin, Yuan Yuxin, Pei Baohua, et al. Improvement of ecology in farm field after adopting poplar-crop intercrop[J]. Science of Woods, 1999, 35(1):54-65.[贾玉彬,袁玉欣,裴保华,等. 杨农间作对农田生态环境的改善[J]. 林业科学, 1999, 35(1): 54-65.]
[16]Charles C Smith, George L f, Randy Jones. Measurement and analysis of evaporation from an inactive qutdoor swimming pool[J]. Solar Energy, 1994, 53(1):3-7.
[17]Cheng Guodong. Investigation on the belt regularity of high altitude frozen soil distribution in China[J]. Geography Journal, 1984, 39(2):185-193.[程国栋. 我国高海拔多年冻土地带性规律之探讨[J]. 地理学报, 1984, 39(2):185-193.]
[18]Meinders E R, Meer T H van der, Hanjalic K. Local convective heat transfer from an array of wall-mounted cubes[J].International Journal of Heat and Mass Transfer, 1998, 41 ( 2):335-346.
[19]Yershov E D. General Geocryology[M]. British: Cambridge University Press, 1998. 525-549.
[20]Ma Wei, Cheng Guodong, Wu Qingbai. Study on the methods of active cooling foundation in permafrost area[J]. Journal of Glaciology and Geocryology, 2002,24(5):579-587.[马巍, 程国栋, 吴青柏. 多年冻土地区主动冷却地基方法研究[J]. 冰川冻土, 2002, 24(5): 579-587.]
[21]Feldman K T.The heat pipe[J]. Mechanical Engineering, 1967, 89:30-31.
[22]Dun P, Reay D A. Heat Pipe[M]. New York: Pergamon Press, 1967. 87-99.

[1] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[2] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[3] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[4] 贾诗超,张廷军,范成彦,刘琳,邵婉婉. InSAR技术多年冻土研究进展[J]. 地球科学进展, 2021, 36(7): 694-711.
[5] 张富贵, 周亚龙, 孙忠军, 方慧, 杨志斌, 祝有海. 中国多年冻土区天然气水合物地球化学勘探技术研究进展[J]. 地球科学进展, 2021, 36(3): 276-287.
[6] 李欣泽, 金会军, 吴青柏, 魏彦京, 温智. 北极多年冻土区埋地输气管道周边温度场数值分析[J]. 地球科学进展, 2021, 36(1): 69-82.
[7] 李欣泽,金会军,吴青柏. 多年冻土区天然气管道压气站失效情境下应对方案研究[J]. 地球科学进展, 2020, 35(11): 1127-1136.
[8] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[9] 李欣泽,金会军. 多年冻土区天然气管道工程:技术挑战和应对方案[J]. 地球科学进展, 2019, 34(11): 1131-1140.
[10] 冉有华,李新. 中国多年冻土制图:进展、挑战与机遇[J]. 地球科学进展, 2019, 34(10): 1015-1027.
[11] 牛富俊, 王玮, 林战举, 罗京. 青藏高原多年冻土区热喀斯特湖环境及水文学效应研究[J]. 地球科学进展, 2018, 33(4): 335-342.
[12] 孙志忠, 马巍, 穆彦虎, 刘永智, 张淑娟, 王宏磊. 青藏铁路沿线天然场地多年冻土变化[J]. 地球科学进展, 2018, 33(3): 248-256.
[13] 令锋, 张廷军. 热卡斯特湖对多年冻土热状况长期作用的数值模拟研究进展[J]. 地球科学进展, 2018, 33(2): 115-130.
[14] 马巍, 穆彦虎, 谢胜波, 毛云程, 陈敦. 青藏高速公路修筑对冻土工程走廊的热力影响及环境效应[J]. 地球科学进展, 2017, 32(5): 459-464.
[15] 曹斌, 张廷军, 彭小清, 郑雷, 牟翠翠, 王庆峰. 黑河流域年冻融指数及其时空变化特征分析[J]. 地球科学进展, 2015, 30(3): 357-366.
阅读次数
全文


摘要