地球科学进展 ›› 2005, Vol. 20 ›› Issue (2): 216 -222. doi: 10.11867/j.issn.1001-8166.2005.02.0216

综述与评述 上一篇    下一篇

极地冰芯不溶性微粒研究进展
韦丽佳 1,2,李院生 1,谭德军 1,周丽娅 1,2,闫 明 1,胡 凯 2,温家洪 1,孙 波 1,刘雷保 1   
  1. 1.中国极地研究中心,上海 200129;2.南京大学地球科学系,江苏 南京 210093
  • 收稿日期:2003-08-26 修回日期:2004-05-17 出版日期:2005-02-25
  • 通讯作者: 李院生(1956-),男,内蒙古包头市人,研究员,主要从事冰川化学、微粒的研究.  E-mail:yshli@sh163e.sta.net.cn
  • 基金资助:

    国家自然科学基金项目“东南极冰盖雪气冰界面化学迁移、物质通量与气候记录”(编号:49973006);科技部科技基础性工作专项“南极地区地球环境监测与关键过程研究——东南极雪冰现代过程研究、埃默里冰架变化及其底部过程监测”(编号:2001DIA50040)资助.

REVIEW OF RESEARCH ON INSOLUBLE MICROPARTICLES IN THE POLAR CORES

WEI Lijia 1,2;LI Yuan-sheng 1;TAN Dejun 1;ZHOU Liya 1,2;YAN Ming 1;HU Kai 2;WEN Jiahong 1;SUN Bo 1;LIU Leibao 1   

  1. 1. Polar Research Institute of China, Shanghai 200129, China;2.Earthscience Department, Nanjing University, Nanjing 210093,China
  • Received:2003-08-26 Revised:2004-05-17 Online:2005-02-25 Published:2005-02-25

极地冰芯包含了大气循环的各种信息,微粒作为其中一个重要的参数,在揭示古环境和古气候信息中起着很重要的作用。冰芯中微粒的含量变化可用于年层的划分,矿物和粒径特征可以用于源区以及大气本底值的研究。另外,微粒记录中还包含了火山、沙尘暴以及人类活动等特殊事件的信息。在过去的50年间,在几大冰芯研究的基础上,极地冰芯微粒的分析工作已取得了很大的成果。近年来,得益于测试水平的迅速提高,微粒研究工作有了长足进展。展望未来,人们将会开拓更新的研究领域。

There are various kinds of information recorded in the polar ice core. In the past research, microparticles have been playing a significant role in implicating paleo-environment and paleo-climate. To sum up, the concentration of microparticles is high in winter and low in summer, and moreover, it behaves high in cold term and low in warm term. Past work on microparticles in ice core is discussed in this paper as a summary. Emphasis is laid on the achievement acquired from the ice cores drilled in Polar region. Ice age can be determined based on the seasonal character of microparticles. For shallow ice cores, dating is accurate just according to microparticles. But for deep ice cores, it must be carried on together with oxygen isotopes. The mineral and radius characteristics can implicate the source and the background value. Furthermore, information of atmosphere circumfluence, intensity of the wind power, droughts, volcano, sandstorm, etc will also be recorded in them. Human factors in global change are always the hotspot of research. In recent years, burning source and carbon are talked much more than before. In the analysis of Euro-core in Greenland, three different types of burning source are found, which will be much helpful in tracing the hunman information. In spite of the immense achievement people have got, there are still lots of difficulties in analysis and sampling. In the past decades, much work has been done on the analysis technique of particles. There are four main methods now in use. Firstly, optics microscope and XEDS are used in the analysis of the single particle, but it is limited to 5μm. Secondly and regularly, Counlter analyzer is used in measuring the quantity and radius of microparticles by the current between the two electrodes. This method is fit for the scale between 0.4~1200μm. Third, after getting enough samples by largely melting, XRD, microscopes, thermionization mass spectrum are utilized in finding out the characters of microparticles on mineralogy, isotopes and granularity. Finally, volcano particles analysis is used in recent years. Volcanic glass and eruptible chippings are transfer to the polar region by atmospheric circumfluence after huge volcano eruption. It is findable of volcanic layers in the ice core of Antarctic. Restrict by the geography and the low concentration of particles, it is hard but necessary to largely sample in Antarctica. It will be advantageous to analyze the ice core directly in the field. But now the technology remains exiguous. Biscaye has explored a new method in Greenland by melting a great amount of ice to get particles in the field. But it is hard to realize in Antarctica. Exterior factors also block the precision of analysis, such as the ice drape, the low accumulation rate, etc.

中图分类号: 

[1]Bader H. United States Polar Ice and Snow Studies in the International Geophysical Year[C].  Washington DC: American Geophysical Union, 1958, 2:177-181.
[2]Marshall E W. Stratigraphic use of particulates in polar ice caps[J]. Bulletin of the Geological Society, 1959, 70:1 643.
[3]Thompson L G. Variations in microparticle concentration, size distribution and elemental composition found in Camp Century, Greenland, and Byrd station, Antarctica, Deep ice cores [J]. International Association of Hydrological Sciences Publication, 1977, 118:351-364.
[4]Petit J R, Briat M, Royer A. Ice Age aerosol content from East Antarctic ice core samples and past wind strength[J]. Nature, 1981, 293:391-394.
[5]Thompson L G, Dansgaard W. Oxygen isotope and micro particle studies of snow samples from Quelccaya ice cap, Peru[J]. Antarctic Journal of the United States, 1975, 10(1):24-26.
[6]Thompson L G, Bolzan J F, Brecher H H,et al. Geophysical investigations of the tropical Quelccaya ice cap, Peru[J]. Journal of Glaciology, 1982, 28(98):57-69.
[7]Yao Tandong, Petit J R, Jouzel J. Climatology study of Caroline ice core in the southeast Antarctic[J]. Science in China(B),1992, 22(5):519-525.[姚檀栋,Petit J R, Jouzel J.东南极洲Caroline冰芯气候研究[J].中国科学B辑,1992, 22(5):519-525.]
[8]Thompson L G, Davis M E, Thompson E M, et al. Preincan agricultural activity recorded in dust layers in two tropical ice core [J]. Nature, 1988, 336:763-765.
[9] Biscaye P E, et al. Asian provenance of glacial dust (stage2) in the Greenland Ice Sheet Project2 Ice Core, Summit, Greenland[J]. JGR, 1997, 12:26 765-26 781.
[10]Zielinski G A. Holocene Volcanic Records in the Siple Dome Ice Cores[R]. AGU Fall Meeting, 2001.
[11]Clausen H B, Hammer C U. The Laki and Tambora eruptions as revealed in Greenland ice cores from 11 locations[J]. Annals of Glaciology, 1988, 10:16-22.
[12]Langway C C, Clausen H B, Hammer C U. An interhemispheric volcanic time marker in ice cores from Greenland and Antarctica[J]. Annals of Glaciology, 1988, 10:102-108.
[13]Staffelbach T, Stauffer B,  Oeschger H. A detailed analysis of the rapid changes in ice-core parameters during the last ice age[J]. Annals of Glaciology, 1988, 10: 167-170.
[14]Thompson L G. Analysis of the Concentration of Microparticle in an Ice Core from Byrd Station, Antarctica [R]. The Ohio State University Research Foundation, Institute of Polar Studies, 1973,46:34.
[15]Chylek  Petr, Peter Damiano, Shettle E,et al. Infrared emissivity of water clouds[J]. Journal of the Atmospheric Sciences, 1992, 49(16):1 459-1 472.
[16]Ram M, Gayley G I. Insoluble particles in polar ice, Identification and measurement of insoluble bachground aerosol[J]. Geophysical Research Letters,1994, 21(6):437-440.
[17]Delmonte B,  Petit J R,  Maggi V. Glacial to Holocene implications of the new 27000-year dust record from the EPICA Dome C (East Antarctica) ice core[J]. Climate Dynamics, 2002, 18:647-660.[18]Katsufumi Sato, Tsuchiya Y,  Kudoh S, et al. Meteorological factors affecting the number of Weddell seals hauling-out on the ice during the molting season at Syowa Station, East Antarctica[J]. Polar Bioscience, 2003, 16:98-103.
[19]Blanchet J P, Girard E. Water-vapor temperature feedback in the formation of the continental Arctic air: Implications for climate[J]. Scicnce of the Total Environment, 1995, 160/161:793-802.
[20]Minikin A, Legrand M, Hall  J, et al. Sulfur-containing species (sulphate and methanesulfonate) in coastal Antarctic aerosol and precipitation[J]. Journal of Geophysical Research, 1998, 103(D9):10 975-10 990.
[21]Petit J R. Palaeoclimatological and chronological implications of the Vostok core dust record[J]. Nature, 1990, 343(6 253):56-58.
[22]Ueda H T, Gargield D E. Deep core drilling at Byrd Station, Antarctica[J]. IASH Publication, 1970,86: 53-62.
[23]Hansen L B, Langway C C Jr. Deep core drilling in ice and core analysis at Camp Century, Greenland, 1961-1966[R]. CRREL Special Report 126, 1966, 5:207-208.
[24]De Angelis M. Ice age data for climatemodelling from Antarctic (Dome C) ice core[A]. In:New Perspective in Climate Modelling[C]. 1984.23-45.
[25]Gaudichet A M, De Angelis, Lefevre E, et al. Mineralogy of insoluble particles in the Vostok Antarctic ice core over the last climatic cycle (150 kyr)[J]. Geophysical Research Letters, 1988, 15(13):1 471-1 474.
[26]Delmas R J, Legrand M. Long-term changes in the concentrations of major chemical compounds soluble and insoluble, along deep ice cores[A]. In: Oeschger H, Langway C C Jr.The Environmental Record in Glaciers and Ice Sheets[C]. New York: Wiley, 1989.318-341.
[27]Taylor L D, Gliozzi J. Distribution of particulate matter in a firn core from Eights Station, Antarctica[J].Antarctic Snow and Ice Studies, American Geophysical Union Antarctic Research Series, 1964, 2:267-277. 
[28]Dansgaard W, Johnson S T, Clausen H B,et al. Evidence for general instability of past climate from a 250 ka ice core record[J]. Nature, 1993, 364: 218-220.
[JP3][29]GRIP Members. Climate instability during the last interglacial period recorded in the GRIP ice core[J]. Nature, 1993, 364:203-207.
[30]Thompson L G, Mosley-Thompson E. Microparticle concentration variations linued with climatic change: Evidence from polar ice cores[J]. Science, 1981, 212:812-815.
[31]Kawamura K, Yanase A, Eguchi T,et al. Enhanced atmospheric transport of soil derived organic matter in spring over the high Arctic[J]. Geophysical Research Letters,1996, 23:3 735-3 737.
[32]Petit J R. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica[J]. Nature, 1999, 399:429-436.

[1] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[2] 王芳慧, 陈莹, 王波, 李好文, 周升钱. 海洋微生物气溶胶的丰度、群落结构及影响机制[J]. 地球科学进展, 2018, 33(8): 783-793.
[3] 祁建华, 李孟哲, 高冬梅, 甄毓, 张大海. 沙尘天气对大气生物气溶胶中微生物浓度、特性和分布的影响[J]. 地球科学进展, 2018, 33(6): 568-577.
[4] 安俊岭, 陈勇, 屈玉, 陈琦, 庄炳亮, 张平文, 吴其重, 徐勤武, 曹乐, 姜海梅, 陈学舜, 郑捷. 全耦合空气质量预报模式系统[J]. 地球科学进展, 2018, 33(5): 445-454.
[5] 陆雯茜, 吴涧. 气溶胶影响印度夏季风和东亚夏季风的研究进展[J]. 地球科学进展, 2016, 31(3): 248-257.
[6] 马天鸣, 谢周清, 李院生. 极地冰芯电学性质及导电测量技术研究进展[J]. 地球科学进展, 2016, 31(2): 161-170.
[7] 曹芳, 章炎麟. 碳质气溶胶的放射性碳同位素( 14C)源解析:原理、方法和研究进展[J]. 地球科学进展, 2015, 30(4): 425-432.
[8] 李忠, 陈立奇, 颜金培. 气溶胶质谱技术在海洋气溶胶亚微米级颗粒物特征的研究进展[J]. 地球科学进展, 2015, 30(2): 226-236.
[9] 游超, 姚檀栋, 邬光剑. 雪冰中生物质燃烧记录研究进展[J]. 地球科学进展, 2014, 29(6): 662-673.
[10] 高会旺, 姚小红, 郭志刚, 韩志伟, 高树基. 大气沉降对海洋初级生产过程与氮循环的影响研究进展[J]. 地球科学进展, 2014, 29(12): 1325-1332.
[11] 张世春,王毅勇,童全松. 碳同位素技术在碳质气溶胶源解析中应用的研究进展[J]. 地球科学进展, 2013, 28(1): 62-70.
[12] 郑有飞,董自鹏,吴荣军,李占清,江洪. MODIS气溶胶光学厚度在长江三角洲地区适用性分析[J]. 地球科学进展, 2011, 26(2): 224-234.
[13] 万国江,郑向东,Lee H N,Bai Z G,万恩源,王仕禄,杨伟,苏菲,汤洁,王长生,黄荣贵,刘鹏. 黔中气溶胶传输的210Pb和7Be示踪:II.月及年时间尺度的剖析[J]. 地球科学进展, 2010, 25(5): 505-514.
[14] 万国江,郑向东,Lee H N,Bai Z G,万恩源,王仕禄,杨伟,苏菲,汤洁,王长生,黄荣贵,刘鹏. 黔中气溶胶传输的 210Pb和 7Be示踪:Ⅰ.周时间尺度的解释[J]. 地球科学进展, 2010, 25(5): 492-504.
[15] 葛茂发,刘 泽,王炜罡. 二次光化学氧化剂与气溶胶间的非均相过程[J]. 地球科学进展, 2009, 24(4): 351-362.
阅读次数
全文


摘要