地球科学进展 ›› 2005, Vol. 20 ›› Issue (2): 207 -215. doi: 10.11867/j.issn.1001-8166.2005.02.0207

综述与评述 上一篇    下一篇

气候模式中云辐射反馈过程机理的评述
汪方 1,2,丁一汇 3   
  1. 1.南京信息工程大学,江苏 南京 210044;
    2.中国气象科学研究院,北京 100081;
    3.中国气象局国家气候中心,北京 100081
  • 收稿日期:2004-01-29 修回日期:2004-06-28 出版日期:2005-02-25
  • 通讯作者: 汪方 E-mail:wf_jason@sina.com

AN EVALUATION OF CLOUD RADIATIVE FEEDBACK MECHANISMS IN CLIMATE MODELS

WANG Fang 1,2;DING Yihui 3   

  1. 1.Nanjing University of Information Science & Technology, Nanjing 210044, China;
    2.Chinese Academy of Meteorological Sciences, Beijing 100081,China;
    3.National Climate Center,CMA,Beijing 100081,China
  • Received:2004-01-29 Revised:2004-06-28 Online:2005-02-25 Published:2005-02-25

云对地气系统的辐射收支具有十分重要的作用,云辐射参数化是目前气候模式中不确定性的主要来源。云可以通过多种途径对辐射产生影响,形成不同符号、不同量值的反馈机制。研究表明,模式气候对不同的云辐射参数化方案十分敏感。预报云水含量方案的引入,改进了对云辐射过程的模拟,但与观测资料相比仍有差距。一般说来,模式中引入云水的相变和相互作用的云粒子大小产生负反馈,而光学厚度和云量产生的是正反馈。云辐射反馈的净作用其大小和符号因模式而异。云辐射与大尺度天气气候背景之间有着紧密的联系,尤其是海温对辐射平衡有显著影响。最后总结了当前云辐射研究中存在的主要问题,并提出了改进的途径。

Cloud plays an important role in the radiative budget of climate system, and cloud-radiation parameterization is one of the main sources of uncertainty in climate models. Cloud can impact radiation through various ways, resulting in feedbacks with different sign and magnitude. Researches show that model climate is very sensitive to cloud-radiation parameterization schemes. As predictable cloud water content is introduced to models, the simulation of cloud-radiation processes is improved,though significant difference from observations still exists. Generally, the introduction of phase change of cloud water and interactive cloud droplet size can produce negative feedbacks, while the cloud optical depth feedback and cloud amount feedback are positive in climate change. Cloud-radiation has a close connection with large-scale background of climate, especially the remarkable SST effect on radiation balance. We also summarize the main problems of present cloud-radiation researches and give some proposals.

中图分类号: 

[1]Ramanathan V. The role of Earth radiation budget studies in climate and general circulation Research[J].  Journal of the Atmospheric Sciences,1987, 37: 447-454.
[2]Ramanathan V, Barkstorm B R, Harrison E F. Climate and the earth's radiation budget[J]. Physics Today, 1989, 42(5): 22-32.
[3]Ramanathan V, Cess R D, Harrison E F, et al. Cloud-radiative forcing and climate: Results form the earth radiation budget experiment[J]. Science, 1989, 243: 57-63.
[4]Manabe S, Smagorinsky J, Strickler R F. Simulated climatology of a general circulation model with a hydrological cycle[J]. Monthly Weather Review, 1965, 93: 769-798. 
[5]Slingo J M. The development and verification of a cloud prediction scheme for the ECMWF model[J]. Quarterly Journal of the Royal Meteorological Society, 1987, 113: 899-927. 
[6]Sundqvist H. A parameterization scheme for non-convective condensation including prediction of cloud water content[J]. Quarterly Journal of the Royal Meteorological Society, 1978, 104: 677-690. 
[7]Del Genio A D, Yao M S, Kovari W, et al. A prognostic cloud water parameterization for global climate models[J]. Journal of Climate, 1996, 9: 270-304. 
[8]Lee W H, Iacobellis S F, Somerville R C J. Cloud radiation forcings and feedbacks: General circulation model test and observational validation[J]. Journal of Climate, 1997, 10: 2 479-2 496.
[9]IPCC. Climate change: The IPCC scientific assessment[A]. In: Contribution of Working Group I to the First Assessment Report of the Intergovernmental Panel on Climate Change[C]. Cambridge, United Kingdom and New York,  USA:Cambridge University Press, 1990.
[10]IPCC. Climate change 1995: The science of climate change[A]. In: Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change[C]. Cambridge, United Kingdom and New York,  USA: Cambridge University Press, 1996.
[11]IPCC. Climate change 2001:The scientific basis[A]. In: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change[C].  United Kingdom and New York,  USA:Cambridge University Press, Cambridge, 2001.
[12]Cess R D, Potter G L, Blanchet J P, et al. Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models[J]. Science, 1989, 245:513-516.
[13]Cess R D, Potter G L, Blanchet J P, et al. Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models[J]. Journal of Geophysical Research,1990, 95: 16 601-16 615.
[14]Cess R D, Zhang M H, Ingram W J, et al. Cloud feedback in atmospheric general circulation models: An update [J].Journal of Geophysical Sciences,1996, 101: 12 791-12 794.
[15]Manabe S, Wetherald R T. Thermal equilibrium of the atmosphere with a given distribution of relative humidity[J]. Journal of the Atmospheric Sciences, 1967, 24(3): 241-259.
[16]Wetherald R T, Manabe S. Cloud feedback processes in a general circulation model[J]. Journal of the Atmospheric Sciences, 1988, 45(8): 1 397-1 415.
[17]Mitchell J F B, Ingram W J. Carbon dioxide and climate-mechanisms of changes in cloud[J].Journal of Climate,1992,5: 5-21.
[18]Yu W, Doutriaux M, Sèze G, et al. A methodology study of the validation of clouds in GCMs using ISCCP satellite observations[J]. Climate Dynamics, 1996, 12: 389-401.
[19]Zhao Gaoxiang, Wang Hongqi. Cloud and radiation Ⅱ: Cloud and cloud radiation parameterizations in general circulation models[J]. Chinese Journal of Atmospheric Sciences,1994,18(suppl.): 933-958.[赵高祥, 汪宏七. 云和辐射(Ⅱ) :环流模式中的云和云辐射参数化[J]. 大气科学, 1994, 18(增刊): 933-958.]
[20]Chen T, Zhang Y C, Rossow W B. Sensitivity of atmospheric radiative heating rate profiles to variations of cloud layer overlap[J]. Journal of Climate, 2000, 13: 2 941-2 959.
[21]Senior C A, Mitchell J F B. Carbon dioxide and climate: The impact of cloud parameterization[J]. Journal of Climate, 1993, 6: 393-418.
[22]Sun Zhian,Keith P Shine. The importance of mixed-phase clouds in GCM climate Simulation[J]. Quarterly Journal of Applied Meteorology, 1996,  7(4):452-459.[孙治安, Keith P Shine. 混合云在GCM气候模拟中的重要性[J]. 应用气象学报, 1996, 7(4): 452-459. ]
[23]Yao M S, Del Genio A D. Effects of cloud parameterization on the simulation of climate changes in the GISS GCM[J]. Journal of Climate, 1999, 12: 761-779.
[24]Tselioudis G, Del Genio A D, Kowari Jr W, et al. Temperature dependence of low cloud optical thickness in the GISS GCM: Contributing mechanisms and climate implication[J]. Journal of Climate, 1998, 11: 3 268-3 281.
[25]Tselioudis G, Rossow W B. Global. Multiyear variations of optical thickness with temperature in low and cirrus clouds[J]. Geophysical Research Letters, 1994, 21: 2 211-2 214.
[26]Tselioudis G, Rossow W, Rind D. Global patterns of cloud optical thickness variation with temperature[J]. Journal of Climate, 1992,5: 1 484-1 495. 
[27]Tselioudis G, Lacis A A, Rind D, et al. Potential effects of cloud optical thickness on climate warming[J]. Nature, 1993, 366: 670-672. 
[28]Roeckner E, Schlese U, Biercamp J, et al. Cloud optical depth feedbacks and climate modeling[J]. Nature, 1987, 329: 138-140.
[29]Iacobellis S F, Somerville R C J, Lane D E, et al. Analysis of cloud-radiation interactions using ARM observations and a single-column model[A]. In: Eight ARM Science Team Meeting[C]. Tucson, AZ: March 23-27, 1998.337-341.
[30]Somerville R C J, Iacobellis S F, Lee W H. Effects of cloud-radiation schemes on climate model results[J]. World Resource Review, 1996, 8: 321-333.
[31]Somerville R C J, Iacobellis S F. Single-column models, ARM observations, and GCM cloud-radiation schemes[J]. Physics and Chemistry of the Earth (B), 1999, 24(6): 733-740.
[32]Slingo A, Slingo J M. The response of a general circulation model to cloud longwave forcing.I: Introduction and initial experiments[J].Quarterly Journal of the Royal Meteorological Society, 1988, 114: 1 027-1 062.
[33]Randall D A, Harshvardhan, Dazlich D A, et al. Interactions among radiation, convection, and large-scale dynamics in a general circulation model[J]. Journal of the Atmospheric Sciences, 1989, 46: 1 943-1 970.
[34]Kuo H L, Qian Y F. Numerical simulation of the development of mean monsoon circulation in July[J]. Monthly Weather Review, 1982, 110: 1 879-1 897.
[35]Chen Shoujun. The Impact of radiative process on the onset of summer monsoon—Numerical experiments[J]. Acta Meteorologica Sinica, 1988, 46(1): 20-27.[陈受钧. 辐射对夏季风开始的影响——数值模拟[J]. 气象学报, 1988, 46(1):20-27. ]
[36]Ding Yihui, Kong Jun. Numerical simulation of 3-D tropical cyclones and the radiative impact on it[J]. Science in China(B), 1988, 8: 887-898.[丁一汇, 孔军. 三维热带气旋的数值模拟及辐射对它的影响[J]. 中国科学B辑, 1988, 8: 887-898.]
[37]Ramanathan V, Collins W. Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Nio[J]. Nature, 1991, 351: 27-32.
[38]Lindzen R S, Chou M D, Hou A Y. Does the Earth have an adaptive infrared iris?[J]. Bulletin of the American Meteorological Society, 2001, 82: 417-432. 
[39]Lindzen R S, Chou M D, Hou A Y. Commnets on “No Evidence for Iris”[J]. Bulletin of the American Meteorological Society, 2002, 83: 1 233-1 237.
[40]Hartmann D L, Michelson M L. Large-scale effects on the regulation of tropical sea surface temperatures[J]. Journal of Climate, 1993, 6: 2 049-2 062.
[41]Fu R, Del Genio A D, Rossow W B, et al. Cirrus-cloud thermostat for tropical sea surface temperature tested using satellite data[J]. Nature, 1992, 358: 394-397.
[42]Hartmann D L, Michelsen M L. No evidence for IRIS[J]. Bulletin of the American Meteorological Society, 2002, 83: 249-254.
[43]Lin B, Wielicki B A, Chambers L H, et al. The iris hypothesis: A negative or positive cloud feedback?[J]. Journal of Climate, 2002, 15: 3-7.
[44]Bony S, Lau K M, Sud Y C. Sea surface temperature and large-scale circulation influences on tropical greenhouse effect and cloud radiative forcing[J]. Journal of Climate,1997,10:2 055-2 077.[45]Yao M S, Del Genio A D. Effects of cloud parameterization on the simulation of climate changes in the GISS GCM. Part II: Sea surface temperature and cloud feedbacks[J]. Journal of Climate, 2002, 15: 2 491-2 504.
[46]Tselioudis G, Zhang Y, Rossow W B. Cloud and radiation variations associated with northern midlatitude low and high sea level pressure regimes[J]. Journal of Climate, 2000, 13: 312-327.
[47]Ma Xiaoyan, Ji Guoliang. Analysis of temporal and spacial variations for cloud radiative forcing in China by using ERBE data[J]. Plateau Meteorology, 2000, 19(2): 150-158.[马晓燕, 季国良. 利用ERBE资料分析中国地区云辐射强迫的时空变化[J]. 高原气象, 2000,19(2): 150-158.]
[48]Wang W C, Gong W, Kau W S, et al. Characteristics of cloud radiative forcing over east China[J]. Journal of Climate, 2004, 17(4): 845-853.
[49]Zhao Zongci, Luo Yong. Simulations of summer monsoon over east Asia: Intercomparisons of three regional climate models[J]. Quarterly Journal of Applied Meteorology, 1997, 8(suppl.): 116-122.[赵宗慈, 罗勇. 东亚夏季风的模拟研究——3 个区域气候模式的对比[J]. 应用气象学报, 1997, 8(增刊): 116-122.]
[50]Luo Yong, Zhao Zongci. Numerical simulation of east Asian regional climate with RegCM2[J]. Quarterly Journal of Applied Meteorology, 1997, 8(suppl.): 124-133.[罗勇, 赵宗慈. NCAR RegCM2对东亚区域气候的模拟试验[J]. 应用气象学报, 1997, 8(增刊): 124-133.]
[51]Leung L R, Ghan S J, Zhao Z C,et al. Intercomparison of regional climate simulations of the 1991 summer monsoon in East Asia[J]. Journal of Geophysical Research,1999, 104: 6 425-6 454.[52]Giorgi F, Huang Y, Nishizawa K,et al. A seasonal cycle simulation over eastern Asia and its sensitivity to radiative transfer and surface processes[J].Journal of Geophysical Research,1999, 104: 6 403-6 424.
[53]Lane D E, Somerville R C J, Iacobellis S F. Sensitivity of cloud and radiation parameterizations to changes in vertical resolution[J]. Journal of Climate, 2000, 13: 915-922.
[54]Wielicki B A, Wong T, Allan R P, et al. Evidence for large decadal variability in the tropical mean radiative energy budget[J]. Science, 2002, 295: 841-844.
[55]Gordon C T, Rosati A, Gudgel R. Tropical sensitivity of a coupled model to specified ISCCP low clouds[J]. Journal of Climate, 2000, 13: 2 239-2 260.
[56]Cess R D, Zhang M H, Minnis P, et al. Absorption of solar radiation by clouds: observations versus models[J]. Science, 1995, 267: 496-499.
[57]Cess R D, Zhang M H, Valero F P J, et al. Absorption of solar radiation by the cloudy atmosphere: Further interpretations of collocated aircraft measurements[J].Journal of Geophysical Research,1999, 104: 2 059-2 066.
[58]Wild M, Ohmura A. The role of clouds and the cloud-free atmosphere in the problem of underestimated absorption of solar radiation in GCM atmospheres[J]. Physics and Chemistry of the Earth, 1999, 24B: 261-268.
[59]Wild M. Absorption of solar energy in cloudless and cloudy atmospheres over Germany and in GCMs[J]. Geophysical Research Letters, 2000, 27: 959-962.

[1] 王冰笛, 李清泉, 沈新勇, 董李丽, 汪方, 王涛, 梁信忠. 区域气候模式 CWRF对东亚冬季风气候特征的模拟[J]. 地球科学进展, 2020, 35(3): 319-330.
[2] 刘冠州, 梁信忠. 新一代区域气候模式(CWRF)国内应用进展[J]. 地球科学进展, 2017, 32(7): 781-787.
[3] 熊喆. 不同积云对流参数化方案对黑河流域降水模拟的影响[J]. 地球科学进展, 2014, 29(5): 590-597.
[4] 陈洪萍, 贾根锁, 冯锦明, 董燕生. 气候模式中关键陆面植被参量遥感估算的研究进展[J]. 地球科学进展, 2014, 29(1): 56-67.
[5] 王连喜, 刘静, 李琪, 钱蕊. 气候变化对宁夏水稻的影响及适应性研究[J]. 地球科学进展, 2013, 28(11): 1248-1256.
[6] 谢永坤, 刘玉芝, 黄建平, 王国印. 雪冰反馈对北半球经向温度梯度的影响[J]. 地球科学进展, 2013, 28(11): 1276-1282.
[7] 王林,陈文. 误差订正空间分解法在中国的应用[J]. 地球科学进展, 2013, 28(10): 1144-1153.
[8] 杨清华,张占海,刘骥平,吴辉碇,张林. 海冰反照率参数化方案的研究回顾[J]. 地球科学进展, 2010, 25(1): 14-21.
[9] 王澄海,吴永萍,崔 洋. CMIP研究计划的进展及其在中国地区的检验和应用前景[J]. 地球科学进展, 2009, 24(5): 461-468.
[10] 李伟平,刘新,聂肃平,郭晓寅,史学丽. 气候模式中积雪覆盖率参数化方案的对比研究[J]. 地球科学进展, 2009, 24(5): 512-522.
[11] 田文寿,张 敏,舒建川. 中层大气模式的应用及发展前景[J]. 地球科学进展, 2009, 24(3): 252-261.
[12] 张雪芹,彭莉莉,林朝晖. 未来不同排放情景下气候变化预估研究进展[J]. 地球科学进展, 2008, 23(2): 174-185.
[13] 黄安宁,张耀存,朱坚. 物理过程参数化方案对中国夏季降水日变化模拟的影响[J]. 地球科学进展, 2008, 23(11): 1174-1184.
[14] 范丽军;符淙斌;陈德亮;. 统计降尺度法对未来区域气候变化情景预估的研究进展[J]. 地球科学进展, 2005, 20(3): 320-329.
[15] 罗勇,王绍武,党鸿雁,赵宗慈. 近20年来气候模式的发展与模式比较计划[J]. 地球科学进展, 2002, 17(3): 372-377.
阅读次数
全文


摘要