地球科学进展 ›› 2005, Vol. 20 ›› Issue (2): 201 -206. doi: 10.11867/j.issn.1001-8166.2005.02.0201

综述与评述 上一篇    下一篇

基于吸附等温线的表面分形研究及其地球科学应用
刘显东 1,陆现彩 1,侯庆锋 2,崔举庆 2,陆志均 1,孙岩 1,徐士进 1   
  1. 1.内生金属矿床成矿机制研究国家重点实验室,南京大学地球科学系,江苏 南京 210093;
    2.南京大学化学系,江苏省表面和界面化学工程与技术研究中心,江苏 南京 210093
  • 收稿日期:2003-12-08 修回日期:2004-09-07 出版日期:2005-02-25
  • 通讯作者: 刘显东 E-mail:xcljun@nju.edu.cn
  • 基金资助:

    国家自然科学基金项目“泥质烃源岩初次排烃过程的流体—矿物界面地球化学研究”(编号:40003002)和“泥质烃源岩中粘土矿物表面电化学特征与沉积有机质生排烃的关系”(编号:40373024)资助.

A FEASIBLE METHOD FOR FRACTAL STUDY USING GAS ADSORPTION ISOTHERM AND ITS APPLICATION IN EARTH SCIENCES

LIU Xiandong 1;LU Xiancai 1;HOU Qingfeng 2; CUI Juqing 2;LU Zhijun 1;SUN Yan 1; XU Shijin 1   

  1. 1.State Key Laboratory of Mineral Deposit Research, Department of Earth Sciences, Nanjing University;
    2.Research Center of Surface and Interface Chemical Engineering Technology, Nanjing University, Nanjing 210093, China
  • Received:2003-12-08 Revised:2004-09-07 Online:2005-02-25 Published:2005-02-25

矿物岩石的表面微形貌和孔隙结构是影响其地球化学行为的关键因素,从纳米尺度上表征这一特征对地球化学动力学研究和材料研发有着重要的意义。重点介绍了基于吸附等温线的分形研究方法,以表征纳米尺度上矿物或岩石表面的不规则性和微孔隙结构。从该方法的物理化学原理出发,对比分析了其适用范围和样品限制。在综合当前煤岩学、土壤学、材料学等领域的应用研究成果的基础上,提出了该分形研究方法在地球科学研究中的应用前景和发展趋势。

The surface properties and pore structure of minerals/rocks are key parameters controlling their geochemical dynamic behaviors. Characterizing these properties on the nanometer scale is greatly significant for geochemical researches and development of new materials. Fractal dimension is an integrated parameter to describe quantitatively the roughness of the surface and the pore-structure in the geological materials. A method for fractal study based on gas adsorption isotherms is introduced in this paper. The suitability and advantages are discussed in the view of the theoretical argument. Based on the review of application of this method in organic petrology, pedology and material sciences, the application prospect of this method in earth science is schemed.

中图分类号: 

[1]Xie Heping. Fractal-introduction to Rock Mechanics. [M].Beijing: Science Press,1996.[谢和平.分形—岩石力学导论[M].北京:科学出版社,1996.]
[2]Sun Yan, Wan Ling, Zhang Xihui, et al. Determination of the fractal dimension D value of the compressive, sharp and tensile fractures in the northern part of traim, Xinjiang[J]. Geological Review, 1997,43(2):162-166. [孙岩,万玲,张喜慧,等. 新疆塔里木北部地区压扭,张破裂面分维数D值测算[J].地质论评,1997,43(2):162-166.]
[3]Lu Xiancai, Hou Qingfeng, Yin Lin, et al. Measurement of contact angles of several common minerals and its discussion[J].Acta Petrologica et Mineralogica, 2003,22(4):397-400.[陆现彩,侯庆锋,尹琳,等.几种常见矿物的接触角测定及其讨论[J].岩石矿物学杂志, 2003,22(4):397-400.]
[4]Mandelbrot B B. The Fractal Geometry of Nature[M]. New York: W.H.Freeman & Company,1983.
[5]Venkatraman A, Fan T, Walawender W P. The Influence of the Temperature of Calcination on the Surface Fractal Dimensions of Ca(OH)2-derived Sorbents[J].Journal of Colloid and Interface Science,1996,182:578-585.
[6]Fripiat J J, Gatineau L, VanDamme  H.Multilayer physical adsorption on fractal surfaces[J]. Langmuir, 1986, 2:562-567.
[7]Levitz P, Gatineau L, VanDamme H. Growth of adsorbed multilayers on fractal surfaces[J]. Langmuir,1988,4(3):781-782.
[8]David Avnir, Mieczyslaw Jaroniec . An Isotherm Equation for Adsorption on Fractal Surfaces of Heterogeneous Porous Materials[J]. Langmuir, 1989,5:1 431-1 433.
[9]Jaroniec M.Evaluation of the Fractal Dimension from a Single Adsorption Isotherm[J]. Langmuir, 1995, 11:2 316-2 317.
[10]Yongbai Yin. Adsorption isotherm on fractally porous materials[J]. Langmuir, 1991,7:216-217.
[11]Pfeifer  P,Wu Y J, Cole M W, et al. Multilayer Adsorption on a Fractally Rough Surface[J]. Physical Review Letters, 1989,62(17):1 997-2 000.
[12]Ismail M K Ismail, Peter Pfeifer. Fractal analysis and surface roughness of nonporous carbon fibers and carbon blacks[J].Langmuir,1994,10:1 532-1 538.
[13]Neimark A V. Thermodynamic method for calculating surfaces fractal dimension[J].JETP Letter,1990,51:535-538.
[14]Neimark A V, Unger K K. Method of discrimination of surface fractality[J]. Journal of Colloid and Interface Science, 1993,158:412-419.
[15]Hurd A J,Schaefer D W, Martin J E. Surface and mass fractals in vapor-phase aggregates[J].Physical Review A,1987,35:2 361-2 364.
[16]Wang Rongjie,Chen Yisheng,Li Baowei. Study on fractal dimensions of coal with gas method of adsorption[J].Journal of Baotou University of Iron and Steel Technology, 1997,16(3):188-192. [王荣杰,陈义胜,李保卫.用气体吸附法研究煤的分形维数[J].包头钢铁学院学报 ,1997,16(3):188-192.]
[17]Xu Longjun, Zhang Daijun, Xian Xuefu. Study on fractal dimensions of coal and their pore structures[J]. Journal of Fuel Chemistry and Technology, 1996,24(1):81-86. [徐龙君,张代钧,鲜学福.煤微孔表面的分形维数及其变化规律的研究[J].燃料化学学报,1996,24(1):81-86.]
[18]Xu Longjun, Gu Leguan, Xian Xuefu. Fractal adsorption model[J]. Coal Conversion, 2000,23(1):91-93.[徐龙君,顾乐观,鲜学福.分形吸附模型[J].煤炭转化,2000,23(1):91-93.]
[19]Xu Longjun, Zhang Daijun, Xian Xuefu. Adsorption characteristic of coal and its application[J].Coal Conversion, 1997,20(2):25-31. [徐龙君,张代钧,鲜学福.煤的吸附特征及其应用[J].煤炭转化,1997,20(2):25-31.]
[20]Fu Xuehai, Qin Yong, Xue Xiuqian. Application of fractal theory on physical properties in coal reservoirs[J].Coal,2000,9(4):1-3.[傅雪海,秦勇,薛秀谦.分形理论在煤储层物性研究中的应用[J].煤,2000,9(4):1-3.]
[21]Qin Yong. Advances and reviews on research of coalbed gas geology in China[J]. Geological Journal of China Universities, 2003,9(3):339-358.[秦勇.中国煤层气地质研究进展与述评[J].高校地质学报,2003,9(3):339-358.]
[22]Sang Shuxun, Qin Yong, Guo Xiaobo, et al. Storing characteristics of Jurassic coalbed gas in Junggar and Tuha basins[J]. Geological Journal of China Universities, 2003,9(3):365-372. [桑树勋,秦勇,郭晓波,等.准噶尔和吐哈盆地侏罗系煤层气储集特征[J].高校地质学报,2003,9(3):365-372.]
[23]Pfeifer P, Avnir D. Chemistry in noninteger dimensions between two and three. 1.Fractal theory of heterogeneous surfaces[J]. Journal of Chemical  Physics, 1983, 79(7):3 558-3 565.
[24]Imre Dekany, Laszlo Turi, Antonio Fonseca, et al. The structure of acid treated sepiolites: Small-angle X-ray scattering and multi MAS-NMR investigations[J]. Applied Clay Science, 1999, 14:141-160.
[25]Lee Jiunnfwu, Lee Chungkung, Juang Lainchuen . Size effects of exchange cation on the pore structure and surface fractality of montmorillonite[J]. Journal of Colloid and Interface Science, 1999, 217:172-176.
[26]Hou Qingfeng, Lu Xiancai, Liu Xiandong, et al. Variation in surface fractal of graphite after the adsorption of Tween80[J]. Applied Surface Science,2005,240(1~4):244-250.
[27]James A Rice, Tombacz E,Kalumbu Malekani. Applications of light and X-ray scattering to characterize the fractal properties of soil organic matter[J]. Geoderma,1999,88:251-264.
[28]Velde B. Structure of surface cracks in soil and muds[J].Geoderma, 1999, 93: 101-124.
[29]Velde B. Surface cracking and aggregate formation observed in a Rendzina soil , La Touche(Vienne) France[J]. Geoderma, 2001, 99: 261-276.
[30]Zofia Sokolowska, Hajnos M, Borowko M, et al. Adsorption of Nitrogen on thermally treated peat soils: The role of energetic and geometric heterogeneity[J]. Journal of Colloid and Interface Science, 1999, 219:1-10.
[31]Zofia Sokolowska, Borowko M,Joanna Reszko-Zygmunt, et al. Adsorption of nitrogen and water vapor by alluvial soils[J]. Geoderma, 2002, 107: 33-54.[32]Lu Xiancai, Liu Qing,Zhang Linye. Variation in surface characteristics of clay minerals in diagensis processes and their relationship to the generation and primary migration of hydrocarbon[J]. Goldschmidt Confevence Abstracts, 2003, 67(18 suppl.):A261.

[1] 高俊峰,苏强. 群落物种多度的分形模型和一般性分布规律的验证与探讨[J]. 地球科学进展, 2021, 36(6): 625-631.
[2] 车雪华, 罗万银, 邵梅, 王中原. 青海共和盆地不同发育阶段风蚀坑表面气流场与形态反馈研究[J]. 地球科学进展, 2021, 36(1): 95-109.
[3] 杨安,相松,黄金水. 金星内部结构与动力学研究进展[J]. 地球科学进展, 2020, 35(9): 912-923.
[4] 张永垂, 王宁, 周林, 刘科峰, 汪浩笛. 海洋中尺度涡旋表面特征和三维结构研究进展[J]. 地球科学进展, 2020, 35(6): 568-580.
[5] 孟宪萌,张鹏举,周宏,刘登峰. 水系结构分形特征的研究进展[J]. 地球科学进展, 2019, 34(1): 48-56.
[6] 栾海军, 田庆久, 章欣欣, 聂芹, 朱晓玲. 定量遥感地表参数尺度转换研究趋势探讨[J]. 地球科学进展, 2018, 33(5): 483-492.
[7] 李旭, 蔡进功, 宋明水, 刘惠民, 刘庆, 李政. 泥页岩烃—孔隙—表面的关系及其对残留烃评价的意义[J]. 地球科学进展, 2018, 33(5): 493-505.
[8] 方迎波, 占文凤, 黄帆, 高伦, 全金玲, 邹照旭. 长三角城市群表面城市热岛日内逐时变化规律[J]. 地球科学进展, 2017, 32(2): 187-198.
[9] 孙寅森, 郭少斌. 基于图像分析技术的页岩微观孔隙特征定性及定量表征[J]. 地球科学进展, 2016, 31(7): 751-763.
[10] 苏强. 群落物种多度格局的分形解析[J]. 地球科学进展, 2015, 30(10): 1144-1150.
[11] 简阔, 傅雪海, 王可新, 张玉贵. 中国长焰煤物性特征及其煤层气资源潜力[J]. 地球科学进展, 2014, 29(9): 1065-1074.
[12] 张朝林,宋长青. “复杂构型涡旋移动动力学的研究”研究成果介绍[J]. 地球科学进展, 2013, 28(9): 1062-1063.
[13] 栾海军,田庆久,余 涛,胡新礼,黄彦,刘李,杜灵通,魏曦. 定量遥感升尺度转换研究综述[J]. 地球科学进展, 2013, 28(6): 657-664.
[14] 成印河,周生启,王东晓. 海上大气波导研究进展[J]. 地球科学进展, 2013, 28(3): 318-326.
[15] 金杰,刘素美. 海洋浮游植物对磷的响应研究进展[J]. 地球科学进展, 2013, 28(2): 253-261.
阅读次数
全文


摘要