地球科学进展 ›› 2002, Vol. 17 ›› Issue (3): 372 -377. doi: 10.11867/j.issn.1001-8166.2002.03.0372

综述与评述 上一篇    下一篇

近20年来气候模式的发展与模式比较计划
罗勇 1,王绍武 2,党鸿雁 1,赵宗慈 1   
  1. 1.国家气候中心,北京 100081;2.北京大学地球物理系,北京 100871
  • 收稿日期:2000-12-11 修回日期:2001-06-20 出版日期:2002-12-20
  • 通讯作者: 罗勇(1965-),男,四川省成都市人,副研究员,近年来主要从事全球大气环流模式、陆面过程模式和区域气候模式的研制以及气候数值模拟与预测研究.E-mail:luoyong@public.east.cn.net E-mail:luoyong@public.east.cn.net
  • 基金资助:

    国家自然科学基金重点项目“20世纪中国与全球气候变率研究”(编号:49635190);国家重点基础研究发展规划项目“我国重大气候和天气灾害形成机理和预测理论的研究”(编号:G1998040900)资助

RECENT ADVANCES IN CLIMATE MODELS AND MODEL INTERCOMPARISON PROJECTS

LUO Yong 1,  WANG Shao-wu 2,  DANG Hong-yan 1,  ZHAO Zong-ci 1   

  1. 1.National Climate Center, Beijing 100081,China;2.Geophysics Department, Peking University, Beijing 100871,China
  • Received:2000-12-11 Revised:2001-06-20 Online:2002-12-20 Published:2002-06-01

20世纪80年代以来,全球气候观测系统的不断完善、国际大型外场观测试验的成功实施以及高性能计算机的飞速发展,为气候模式的迅猛发展提供了基础和条件。近20年来气候模式的复杂程度和模拟能力得到了显著的提高,目前已成为研究全球和区域气候的形成及变异、气候系统各圈层之间的相互作用以及全球变化等的有力工具。对气候模式(包括大气环流模式、陆面过程模式、海洋环流模式以及区域气候模式)的主要发展进行综合评述,并简要介绍了目前世界上一些主要的模式比较研究计划。

 Since 1980s continuous development of the global climate observing system, successful implementation of the international field experiments in different regions as well as the fast development of computer performance have provided great support to the booming of climate models. Both of the architecture complexity and simulation ability of climate models were experienced a significant promotion in the recent 20 years. Climate models have been applied widely in the studies on formation and anomalies of global and regional climate, interaction among components of climate system and impacts of anthropogenic climate change. This paper summaries the recent advances in climate models, including atmospheric general circulation models, land surface process models, oceanic general circulation models and regional climate models. Some important existing international model intercomparison projects and their progresses are also reviewed.

中图分类号: 

[1]Robert A A. A semi-lagrangian and semi-implicit numerical integration scheme for primitive meteorological equations[J]. J Meteor Soc Japan, 1982, 60: 319-325.
[2]Zeng Q C, Yuan C G, Zhang X H, et al. A global grid-point general circulation model[A]. In: Collection of Papers Presented at WMO/IUGG NWP Symposium[C]. Tokyo, August 4-8, 1986. 421-430.
[3]Chen J B, Ji L R, Wu W L. Design and test of an improved scheme for global spectral model with reduced truncation error[J]. Adv in Atmos Sci, 1987, 4: 156-168.
[4]Wang Bin, Ji Zhongzhen. The construction and preliminary test of the explicit complete square conservative difference schemes[J].Chinese Science Bulletin, 1990, 35(10): 766-768.[王斌,季仲贞.显式完全平方守恒差分格式的构造及其初步检验[J].科学通报,1990,35(10): 766-768.]
[5]Zhong Qing. The formulation of fidelity schemes of physical conservation laws and improvements on a traditional spectral model of baroclinic primitive equations for numerical predictions[J].Acta Meteorological Sinica, 1997, 55(6): 641-661.[钟青.物理守恒律保真格式构造与数值预报斜压原始方程传统谱模式改进研究[J].气象学报,1997,55(6):641-661.]
[6]Harshvardhan R D, Randall D A, Corsetti T G. A fast radiation parameterization for general circulation models[J]. J G R, 1987, 92: 1 009-1 016.
[7]Morcrette J-J. Radiation and cloud radiative properties in the ECMWF operational weather forecast model[J]. J G R, 1991, 96: 9 121-9 132.
[8]Tiedtke M. A comprehensive mass flux scheme for cumulus parameterization in large-scale models[J]. Mon Wea Rev, 1989, 117: 1 779-1 800.
[9]Betts A K, Miller M J. The Betts-Miller Scheme[A]. In:Emanuel K A, Raymond D J, eds. The Representation of Cumulus Convection in Numerical Models[C].  Meteorological Monographs, Vol. 24, No. 46, American Meteorological Society, Boston, MA, 1993.107-121.
[10]Zhang G J, McFarlane N A. Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian climate centre general circulation model[J]. Atmos-Ocean, 1995, 33: 407-446.
[11]Palmer T N, Shutts G J, Swinbank R. Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization[J]. Quart J Roy Meteor Soc, 1986, 112: 1 001-1 039.
[12]McFarlane N A. The effect of orographically excited gravity-wave drag on the circulation of the lower stratosphere and troposphere[J]. J Atmos Sci, 1987, 44: 1 775-1 800.
[13]Gates W L. AMIP: The Atmospheric Model Intercomparison Project[J]. Bull Amer Meteor Soc, 1992, 73(12): 1 962-1 970.
[14]Dickinson R E, Henderson-Sellers A, Kennedy P J. Biosphere Atmosphere Transfer Scheme (BATS) Version le as Coupled to the NCAR Community Climate Model[R]. NCAR Technical Note, NCAR/TN-387+STR, 1993. 
[15]Sellers P J, Mintz Y, Sud Y C, et al. A simple biosphere model (SiB) for use within general circulation models[J]. J Atmos Sci, 1986, 43: 505-531.
[16]Xue Y, Sellers P J, Kinder III J L, et al. A simplified biosphere model for global climate studies[J]. J Climate, 1991, 4: 345-364.
[17]Bonan G B. A Land Surface Model (LSM Version 1.0) for Ecological, Hydrological and Atmospheric Studies: Technical Description and User's Guide[R]. NCAR Technical Note, NCAR/TN-417+STR, Boulder, Colorado, 1996.
[18]Sellers P J, Randall D A, Collatz G J, et al. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model Formulation[J]. J Climate, 1996, 9: 676-705.
[19]Sellers P J, Los S O, Tucker C J, et al. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part II: The generation of global fields of terrestrial biophysical parameters from satellite data[J]. J Climate, 1996, 9: 706-737.
[20]Henderson-Sellers A, Yang Z L, Dickinson R E. The project for intercomparison of land-surface parameterization schemes[J]. Bull of the Amer Met Soc, 1993, 74: 1 335-1 349.
[21]Danabasoglu G, McWilliams J C, Gent P R. The role of mesoscale tracer transport in the global ocean circulation[J]. Science, 1994, 264: 1 123-1 126.
[22]Sausen R, Barthel K, Hasselmann K. Coupled ocean-atmosphere models with flux correction[J]. Clim Dyn, 1988, 2: 145-163.
[23]Boville B A, Gent P R. The NCAR climate system model, Version one[J]. J Climate, 1998, 11: 1 115-1 130.
[24]Covey C, Abe-Ouchi A, Boer G J, et al. The seasonal cycle in coupled ocean-atmosphere general circulation models[J]. Clim Dyn, 2000, 16: 775-787.
[25]Barnett T P, Hegerl G, Knutson T, et al. Uncertainty levels in predicted patterns of anthropogenic climate change[J]. J G R, 2000, 105(D12): 15 525-15 542.
[26]Giorgi F, Mearns L. Approaches to the simulation of regional climate change: a review[J]. Rev Geophys, 1991, 29: 191-216.
[27]Luo Yong, Zhao Zongci. Numerical simulation of East Asian regional climate with NCAR RegCM2[J].Quarterly Journal of Applied Meteorology, 1997, 8(Supplement): 124-133.[罗勇,赵宗慈.NCAR RegCM2对东亚区域气候的模拟试验[J].应用气象学报,1997,8(增刊):124-133.]
[28]Fu Congbin, Wen Helin, Cheng Ming,et al. Simulation of summer monsoon rainbelts over Eastern China from region climate model[J]. Scientia Atmospheric Sinica, 1998,22(4):522-534.[符淙斌,魏和林,陈明,等.区域气候模式对中国东部季风雨带演变的模拟[J].大气科学,1998,22(4):522-534.]
[29]Christensen J H, Machenhauer B, Jones R G, et al. Validation of present-day regional climate simulations over Europe: LAM simulations with observed boundary conditions[J]. Clim Dyn, 1997, 13: 489-506.
[30]Takle E S, Gutowski W J Jr, Arritt R W, et al. Project to Intercompare Regional Climate Simulations (PIRCS): Description and initial results[J]. J G R, 1999, 104: 19 443-19 462.
[31]Leung L R, Ghan S J, Zhao Z-C, et al. Intercomparison of regional climate simulations of the 1991 summer monsoon in eastern Asia[J]. J G R, 1999, 104: 6 425-6 454.

[1] 王冰笛, 李清泉, 沈新勇, 董李丽, 汪方, 王涛, 梁信忠. 区域气候模式 CWRF对东亚冬季风气候特征的模拟[J]. 地球科学进展, 2020, 35(3): 319-330.
[2] 曲建升, 肖仙桃, 曾静静. 国际气候变化科学百年研究态势分析 *[J]. 地球科学进展, 2018, 33(11): 1193-1202.
[3] 刘冠州, 梁信忠. 新一代区域气候模式(CWRF)国内应用进展[J]. 地球科学进展, 2017, 32(7): 781-787.
[4] 史培军, 王爱慧, 孙福宝, 李宁, 叶涛, 徐伟, 王静爱, 杨建平, 周洪建. 全球变化人口与经济系统风险形成机制及评估研究[J]. 地球科学进展, 2016, 31(8): 775-781.
[5] 吴炳方, 邢强. 遥感的科学推动作用与重点应用领域[J]. 地球科学进展, 2015, 30(7): 751-762.
[6] 黄邦钦, 柳欣. 边缘海浮游生态系统对生物泵的调控作用[J]. 地球科学进展, 2015, 30(3): 385-395.
[7] 艾丽坤, 王晓毅. 全球变化研究中自然科学和社会科学协同方法的探讨[J]. 地球科学进展, 2015, 30(11): 1278-1286.
[8] 房启飞, 张虎权. 地球系统变化对叠层石衰减影响的研究综述[J]. 地球科学进展, 2014, 29(9): 1003-1010.
[9] 魏学琼, 叶瑜, 崔玉娟, 李蓓蓓, 袁存, 方修琦. 中国历史土地覆被变化重建研究进展[J]. 地球科学进展, 2014, 29(9): 1037-1045.
[10] 熊喆. 不同积云对流参数化方案对黑河流域降水模拟的影响[J]. 地球科学进展, 2014, 29(5): 590-597.
[11] 刘贤赵, 张勇, 宿庆, 田艳林, 全斌, 王国安. 现代陆生植物碳同位素组成对气候变化的响应研究进展[J]. 地球科学进展, 2014, 29(12): 1341-1354.
[12] 史培军, 孔锋, 叶谦, 汪明, 刘凯. 灾害风险科学发展与科技减灾[J]. 地球科学进展, 2014, 29(11): 1205-1211.
[13] 汪品先. 对地球系统科学的理解与误解——献给第三届地球系统科学大会[J]. 地球科学进展, 2014, 29(11): 1277-1279.
[14] WuGuoxiong,LinHai,ZouXiaolei,LiuBoqi,HeBian. 全球气候变化研究与科学数据[J]. 地球科学进展, 2014, 29(1): 15-22.
[15] 陈洪萍, 贾根锁, 冯锦明, 董燕生. 气候模式中关键陆面植被参量遥感估算的研究进展[J]. 地球科学进展, 2014, 29(1): 56-67.
阅读次数
全文


摘要