地球科学进展 ›› 2004, Vol. 19 ›› Issue (1): 107 -114. doi: 10.11867/j.issn.1001-8166.2004.01.0107

综述与评述 上一篇    下一篇

遥感技术应用于地表面蒸散发的研究进展
郭晓寅;程国栋   
  1. 中国气象科学研究院,北京 100081;中国科学院寒区旱区环境与工程研究所冻土工程国家重点实验室,甘肃 兰州 730000
  • 收稿日期:2002-11-15 修回日期:2003-04-09 出版日期:2004-01-20
  • 通讯作者: 郭晓寅(1971-),女,吉林龙井人,博士,主要从事遥感与地理信息系统在冰冻圈和生态研究中的应用. E-mail:E-mail:guoxy@cams.cma.gov.cn
  • 基金资助:

    中科院寒区旱区环境与工程研究所知识创新工程项目“黑河流域交叉集成研究的模型开发和模拟环境建设”(编号:CACX2003102);“黑河虚拟数字流域及动态管理系统”(编号:CACX210018)资助

ADVANCES IN THE APPLICATION OF REMOTE SENSING TO EVAPOTRANSPIRATION RESEARCH

GUO XiaoYin 1,CHENG GuoDong 2   

  1. 1. Chinese Academy of Meteorological Sciences, Beijing 100081,China;2. State Key Laboratory of Cold Soil Engineering, Cold and Arid Regions Environment and Engineering Research Institute, Chinese Academy of Sciences,Lanzhou 730000,China
  • Received:2002-11-15 Revised:2003-04-09 Online:2004-01-20 Published:2004-02-01

蒸散既是地表水分循环的重要组成部分,也是能量平衡的主要项。地表热量、水分收支状况在很大程度上决定着地理环境的组成和演变,清楚地认识蒸散发,对了解大范围内能量平衡和水分循环具有重要意义。目前,已发展了从传统方法、模拟方法到遥感方法的很多种方法用于估算蒸散发。遥感方法以其能够获知大范围地表特征信息的优势为较准确估算地表蒸散发提供了可能,从而受到人们的日益重视。介绍了研究蒸散发的各种方法,并探讨了利用遥感方法研究蒸散发的优缺点和未来的发展前景。

Evapotranspiration is not only an important component in hydrological cycle, but also a main part of energy balance. Estimation of the evapotranspiration is essential for understanding the large-scale energy and water balance. Many methods, including traditional methods, land surface process model and remote sensing, have been developed to estimate evapotranspiration. For gaining large-scale land surface characteristic information, remote sensing techniques make it possible to estimate evapotranspiration quite accurately.
There are a lot of remote sensing methods to estimate evapotranspiration, which can be summarized as follows: statistical (empirical) and half-statistical models, physical models and numerical models and each method has its own advantages and disadvantages.
 According to the present studies, most remote sensing methods mainly use visible, near-infrared and thermal infrared wave bands. The former two bands are used to estimate canopy density and albedo and thermal infrared band can provide information about land surface temperature. In recent studies, a few models have been developed to estimate land surface water status and land surface temperature by using microwave data instead of optical remotely sensed data. A lot of retrieval algorithms have been developed in retrieving land surface parameters such as albedo, land surface temperature and emissivity. For example, land surface temperature, an important land surface parameter, can be estimated well by means of split window technique.
Great progresses have been achieved in the application of remote sensing technology to evapotranspiration research, but some problems must be resolved to improve the precision of these evapotranspiration models. ①The energy fluxes change of hourly, daily even longer time scale from observations of remote sensing are instantaneous. ②Air temperature of each pixel can not be obtained directly while most models are sensitive to difference of surface radiative temperature and air temperature. ③ Influences of atmospheric correct, radiation calibration and observing angle to the measurement of surface radiative temperature are not well known. ④Continuous calculation of surface fluxes is very important, but the exist of cloud makes satellite observation discontinuous. ⑤Satellites (such as NOAA and GOES) of big pixel scale (1~4 km) have enough observing frequency, but heterogeneous sub-pixel makes observation uncertainty. With the data of series of new EOS sensors, there will be new hope for evapotranspiration study.

中图分类号: 

[1] Burman R,Pochop L O. Evaporation, Evapotranspiration and Climate Data[M].The Netherlands:Elsevier Science, 1994.
[2] Rosenberg N J, Blad B L,Verma S B. Microclimatethe Biological Environment of Plants[M]. New York:John Wiley & Sons, 1983.
[3] Kustas W P, Norman J M. Use of remote sensing for evapotranspiration monitoring over land surfaces[J]. Hydrological Sciences Journal, 1996, 41(4): 495-516.
[4] Pei Buxiang(裴步祥). Measurement and Calculation of Evaporation and Evapotranspiration[M]. Beijing: Meteorology Press, 1989. 1-28(in Chinese).
[5] Sellers P J, Mintz Y, Sud Y C, et al. A simple biosphere model(SiB) for use within general circulation models[J]. Journal of the Atmospher
ic Sciences, 1986, 43: 505-531.
[6] Sellers P J, Randall D A, Collatz G J, et al. A revised land surface paramterization(SiB2) for atmospheric GCMs Part1: Model formulation[J]. Journal of Climate, 1996, 9: 738-763.
[7] Dickinson R E. Land processes in climate models[J]. Remote Sensing of Environment, 1995, 51: 27-38.
[8] Brutsaert W.  Evaporation into the Atmosphere[M]. The Netherlands:Reidel, Dordrecht, 1982.
[9] Jackson R D, Reginato R J, Idso S B. Wheat canopy temperature: Apractical tool for evaluating water requirements[J]. Water Resources research, 1977, 13(3): 651-656.
[10] Seguin B, Itier B. Using midday surface temperature to estimatedaily evaporation from satellite thermal IR data[J]. International Journal of Remote Sensing, 1983, 4(2): 371-383.
[11] Gurney R J, Camillo P J. Modelling daily evapotranspiration using remotely sensed data[J].Journal of Hydrology,1984, 69: 305-324.
[12] Riou Ch, Itier B, Seguin B. The influence of surface roughness on simplified relationship between daily evaporation and surface temperature[J]. International Journal of Remote Sensing, 1988, 9(9): 1 529-1 533.
[13] Vidal A, Perrier A. Analysis of a simplified relation for estimating daily evapotranspiration from satellite thermal IR data[J]. International Journal of Remote Sensing, 1989, 10(8): 1 327-1 337.
[14] Seguin B, Assad E, Freaud J P, et al. Use of meterological satellites for rainfall and evaporation monitoring[J]. International Journal of Remote Sensing, 1989, 10: 847-854.
[15] Lagouarde J P. Use of NOAA AVHRR data combined with an agrometeorological model for evaporation mapping[J]. International Journal of Remote Sensing, 1991, 12(9): 1 853-1 864.
[16] Lagouarde J P, McAneney K J. Daily sensible heat flux estimation from a single measurement of surface temperature and maximum air temperature[J]. Boundary Layer Meteorology, 1992, 44: 245-260.
[17] Bussières N, Granger R J, Strong G S. Estimates of regional evapotranspiration using GOES7 satellite data: Saskatchewan case study, July 1991[J].Canadian Journal of Remote Sensing, 1997, 23(1): 3-14.
[18] Caselles V, Artigao M M, Hurtado E, et al. Mapping actual evapotranspiration by combining landsat TM and NOAAAVHRR images: Application to the Barrax area, Albacete, Spain[J]. Remote Sensing of Environment, 1998, 63(1): 1-10.
[19] Carlson T N, Capehart W J, Gillies R R. A new look at the simplified method for remote sensing of daily evapotranspiration[J]. Remote Sensing of Environment, 1995, 54: 161-167.
[20] Jackson R D. Estimating evapotranspiration at local and regional scales[J].IEEE Transactions on Geoscience and Remote Sensing, 1985, GE-73:1 086-1 095.
[21] Gash J H C. An analytical framework for extrapolating evaporation measurements by remote sensing surface temperature[J].International Journal of Remote Sensing,1987, 8(8): 1 245-1 249.
[22] Kustas W P, Moran M S, Jackson R D,et al. Instantaneous and daily values of the surface energy balance over agricultural fields using remote sensing and a reference field in an arid environment[J]. Remote Sensing of Environment, 1990, 32: 125-141.
[23] Menenti M, Bastiaassen W G M, Van Eick D. Linear relationships between surface reflectance and temperature and their application to map actual evaporation of groundwater[J]. Advances in Space Research,1989, 9(1): 165-176.
[24] Humes K S, Kustas W P, Moran M S. Use of remote sensing and reference site measurements to estimate instaneous surface energy balance components over a semiarid rangeland watershed[J].Water Resources Research, 1994, 30(5): 1 363-1 373.
[25] Nemani R R, Running S W. Estimation of regional surface resistance to evapotranspiration from NDVI and ThermalIR AVHRR data[J]. Journal of Applied Meteorology, 1989, 28: 276-284.
[26] Hope A S, McDowell T P. The relationship between surface temperature and spectral vegetation index of a tallgrass prairie: effects of burning and other landscape controls[J]. International Journal of Remote Sensing, 1992, 13(15): 2 849-2 863.
[27] Kustas W P, Daughtry C S T, van Oevelen P J. Analytical treatment of the relationships between soil heat flux/net radiation ratio and vegetation indices[J].Remote Sensing of Environment, 1993, 46: 319-330.
[28] Price J C. The potential of remotely sensed thermal infrared data to infer surface soil moisture and evaporation[J].Water Resources Research, 1980, 16(4): 787-795.
[29] Price J C. Estimation of regional scale evapotranspiration through analysis of satellite thermalinfrared data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1982, GE20(3): 286-292.
[30] Choudhury B J, Reginato J R, Idso S B. An analysis of infrared temperature obervations over wheat and calculation of latent heat flux[J].  Agricultural and Forest Meteorology,1986, 37: 75-88.
[31] Huband N D S, Monteith J L. Radiative surface temperature and energy balance of a wheat canopy Part I: Comparison of radiative and aerodynamic canopy temperature[J]. Boundary Layer Meteorology, 1986, 36: 1-17.
[32] Kustas W P. Estimates of evapotranspiration with a one and two layer model of heat transfer over partial canopy cover[J].Journal of Applied Meteorology, 1990, 29: 704-715.
[33] Kustas W P, Choudhury B J, Moran M S, et al. Determination of sensible heat flux over sparse capony using thermal infrared data[J]. Agricultural and Forest Meteorology, 1989, 44: 197-216.
[34] Sugita M, Brutsaert W. Regional surface fluxes from remotely sensed skin temperature and lower boundary layer measurements[J].Water Resources Research, 1990, 26: 2 937-2 944.
[35] Kohsiek W, de Bruin H A R, The H,et al. Estimation of the sensible heat flux of semiarid area using surface radiative temperature measure
ments[J]. Boundary Layer Meteorology, 1993, 63: 213-230.
[36] Sun J, Mahrt L. Determination of surface fluxes from the surface radiative temperature[J]. Journal of the Atmopheric Sciences, 1995, 52(8): 1096-1 106.
[37] Troufleau D, Lhomme J P, Monteny B,et al. Sensible heat flux and radiometric surface temperature over sparse Sahelian vegetation, I An experimental analysis of the kB1 parameter[J]. Jounal of Hydrology, 1997, 188~189: 815-838.
[38] Lhomme JP, Monteny B, Amadou M. Estimating sensible heat flux from radiometric temperature over sparse millet[J]. Agricultural and Forest Meteorology, 1994, 68: 77-91.
[39] Norman J M, Kustas W P, Humes K S. A twosource approach forestimating soil and vegetation energy fluxes from observation of directional radiometric surface temperature[J]. Agricultural and Forest Meteorology,1995, 77: 263-293.
[40] Zhan X, Kustas W P, Humes K S. An intercomparison study on model of sensible heat flux over partial canopy surfaces with remotely sensed surface temperature[J]. Remote Sensing of Environment,1996, 58: 242-256.
[41] Soer G J R. Estimation of regional evapotranspiration and soil moisture conditions using remotely sensed crop surface temperature[J]. Remote Sensing of Environment, 1980, 9(1): 27-45.
[42] Camillo P J, Gurney R J, Schmugge T J. A soil and atmospheric boundary layer model for evapotranspiration and soil moisture studies[J].Water Resources Research, 1983, 19: 371-380.
[43] Carlson T N, Dodd J K, Benjamin S G, et al. Satellite estimation of the surface energy balance, moisture availability and thermal inertia[J].Journal of Applied Meteorology,1981, 20: 67-87.
[44] Taconet O, Carlson T, Bernard R, et al. Evaluation of a surface/vegetation parameterization using satellite measurements of surface temperature[J]. Journal of Climate and Applied Meteorology, 1986, 25: 1 752-1 767.
[45] Bougeault P, Noilhan J, Lacarrère P,et al. An experiment with an advaced surface parameterization in a mesobetascale model Part I: Implementation[J].Monthly Weather Reviews, 1991, 119: 2 358-2 373.
[46] Brunet Y, Nunez M, Lagouarde JP. A simple method for estimating regional evapotranspiration from infrared surface temperature[J]. Photogrammetric Engineering and Remote Sensing, 1991, 46: 311-327.
[47] Pinty B, Ramond D A. A method for the estimate of broadband directional surface albedo from a geostationary satellite[J]. Journal of Climate and Applied Meteorology, 1987, 26: 1 709-1 722.
[48] Brest C L, Goward S N. Deriving surface albedo measurements from narrow band satellite data[J]. International Journal of Remote Sensing, 1987, 8: 349-367.
[49] Song J, Gao W. An improved method to derive surface albedo from narrowband AVHRR Satellite data: Narrowband to broadband conversion[J]. Journal of Applied Meteorology, 1999, 38:239-249.
[50] Wu Aisheng(吴艾笙), Zhong Qiang(钟强). Seasonal variation of surface albedo and vegetation index over HEIHE experimental area[J].Plateau Meteorology(高原气象), 1992, 11(4): 440-450(in Chinese).
[51] Wang Jiemin(王介民), Ma Yaoming(马耀明). The study of processes in the heterogeneous landscape of HEIHE with the aid of satellite remote sensing[J]. Remote Sensing Technology and Application(遥感技术与应用), 1995, 10(3): 19-26.
[52] Tian Qingjiu(田庆久), Min Xiangjun(闵祥军). Advances in study on vegetation indices[J]. Advance in Earth Sciences(地球科学进展), 1998, 13(4): 327-333(in Chinese). 
[53] Jia Li(贾立), Wang Jiemin(王介民). The area distribution and seasonal variation of NDVI over HEIHE area[J]. Plateau Meteorology(高原气象), 1999, 18(2): 245249(in Chinese).
[54] Prabhakara C, Daul G, Kunde V G. Estimation of sea surface temperature from remote sensing in the 11um to 13 um window region[J]. Journal of Geophysical Research, 1974, 79: 5 039-5 044.
[55] McMillin L M. Estimation of sea surface temperature from two infrared window measurements with different absorption[J]. Journal of Geophysical Research,1975, 36: 5 113-5 117.
[56] Deschamps P Y, Phulpin T. Atmospheric corrections of infrared measurements of sea surface temperature using channels at 3.7, 11 and 12 μm[J].Boundary Layer Meteorology, 1980, 18: 131-143.
[57] McClain E P, Pichel W G, Walton C C. Comparative performance of AVHRRbased multichannel sea surface temperature[J]. Journal of Geophysical Research, 1985, C6: 11 587-11 601.
[58] Price J C. Land surface temperature measurement from the split window channels of the NOAA 7 Advanced Very High Resolution Radiometer[J]. Journal of Geophysical Research,1984, 89(D5): 7 231-7 237.
[59] Becker F, Li ZL. Temperature independent spectral indices in thermal infrared bands[J]. Remote Sensing of Environment, 1990, 32: 17-33.
[60] Prata A J, Caselles V, Coll C, et al. Thermal remote sensing of land surface temperatures from satellites: Current status and future prospects[J].Remote Sensing Reviews, 1995, 12: 175-224.
[61] Coll C, Caselles V. A splitwindow algorithm for land surface temperature from advanced very high resolution radiometer data: Validation and algorithm comparision[J]. Journal of Geophysical Research,1997, 102(D14): 16 697-16 713.
[62] Sobrino J A, Raissouni N, Lobo A. Monitoring the Iberian Peninsula land cover using NOAAAVHRR data[A]. In: Guyot, Phulpin, eds. Physical Measurements and Signatures in Remote Sensing[C]. Rotterdam: Balkema, 1997. 787-794.
[63] Sobrino J A, Raissouni N. Toward remote sensing methods for land cover dynamic monitoring: application to Morocco[J].International Journal of Remote Sensing, 2000, 21(2): 353-366.
[64] Becker F, Li ZL. Surface temperature and emissivity at various scales: Definition, measurements and related problems[J]. Remote Sensing Reviews, 1995, 12: 225-253.
[65] Van De Griend A A, Owe M. On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces[J].International Journal of Remote Sensing, 1993, 14(6): 1 119-1 131.
[66] Chanzy A, Kustas W P. Evaporation monitoring over land surface using microwave radiometry[A]. In: Choudhury B J, et al eds. ESA/NASA International Workshop[C]. The Netherlands : VSP, Utrecht, 1994. 531-550.
[67] Jackson T J, O'Neill P E, Kustas W P, et al.Passive microwave observation of diural soil moisture at 1.4 and 2.65 GHz[A]. In: Proceeding of 1995 International Geoscience and Remote Sensing Symposium[C].IEEE, 1995, I: 492-494.
[68] Troufleau D, Vidal A, Beaudoin A, et al, Using opticalmicrowave synergy for estimating surface energy fluxes over semiarid rangeland[A]. In: Proceeding of Physical Measurements and Signatures in Remote Sensing[C]. France: Val d'lsere, 1994.1 167-1 174.
[69] Moran M S, Vidal A, Troufleau D, et al. Combining multifrequency microwave and optical data for farm management[J]. Remote Sensing of Environment, 1997, 61: 96-109.
[70]Zhang Renhua(张仁华). Analysis and experiments of evapotranspiration model on remote sensing[A]. In: Zuo Dakang(左大康), Xie Xianqun(谢贤群), eds. Experimental Study of the Field Evapotranspiration1[C]. Beijing: Meteorology Press, 1991. 111-118(in Chinese). 
[71]Zhang Renhua(张仁华). A model for calculating evapotranspiration using crop spectrum and canopy surface temperature[A]. In: Zuo Dakang(左大康), Xie Xianqun(谢贤群), eds. Experimental Study of the Field Evapotranspiration1[C]. Beijing: Meteorology Press, 1991. 119-127(in Chinese). 
[72]Chen  Jingming(陈镜明). An chief defect of  modern remote sensing evapotranspiration model and its improvement[J].Chinese  Science  Bulletin(科学通报), 1988,6:454-457.
[73]Chen Yunhao(陈云浩), Li Xiaobing(李晓兵), Shi Peijun(史培军). Regional evapotranspiration estimation over Northwest China using remote sensing[J]. Acta Geographica Sinica(地理学报), 2001, 56(3): 261-268.
[74] Xie Xianqun(谢贤群). Estimation of daily evapotranspiration(ET) from one timeofday remotely sensed canopy temperature[J]. Remote Sensing  of  Environment China(环境遥感),1991,6(4): 253-259(in Chinese).
[75] Chen Qian(陈乾), Chen Tianyu(陈添宇). Estimation of river basin evapotranspiration over complex terrain using NOAA AVHRR data[J]. Acta Geographica Sinica(地理学报), 1993, 48(1): 61-69(in Chinese).
[76] Ma Yaoming(马耀明), Wang Jiemin(王介民), Menenti M, et al. Estimation of flux densities over the heterogeneous land surface with the aid of satellite remote sensing and field observation[J]. Acta  Meteorologica  Sinica(气象学报),1999, 57(2): 180-189(in Chinese). 
[77] Seguin B, Lagourde J P, Svane M. The assessment of regional crop water conditions from meteorological satellite thermal infrared data[J].Remote Sensing of Environment, 1991, 35(2~3): 141-148.
[78] Ottlé C, VidalMadjar D. Assimilation of soil moisture inferred from infrared remote sensing in a hydrological model over the HAPEXMOBILHY region[J]. Journal of Hydrology, 1994, 158(3~4): 241-264.
[79] Gillies R R, Carlson T N. Thermal remote sensing of surface soil water content with partial vegetation cover for incorporation into climate models[J].Journal of Applied Meteorology, 1995, 34: 745-756.
[80] Olioso A, Chauki H, Courault D, et al. Estimates of Evapotranspiration and Photosynthesis by Assimilation of Remote Sensing Data into SVAT Models[J].Remote Sensing of Environment, 1999, 68: 341-356.

[1] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[2] 王俏懿,马耀明,王宾宾,左洪超. 喜马拉雅南北坡地区地表能量通量及蒸散发量对比分析[J]. 地球科学进展, 2021, 36(8): 810-825.
[3] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[4] 王忠静,石羽佳,张腾. TRMM遥感降水低估还是高估中国大陆地区的降水?[J]. 地球科学进展, 2021, 36(6): 604-615.
[5] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[6] 吴佳梅,彭秋志,黄义忠,黄亮. 中国植被覆盖变化研究遥感数据源及研究区域时空热度分析[J]. 地球科学进展, 2020, 35(9): 978-989.
[7] 董治宝,吕萍,李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[8] 刘元波, 吴桂平, 赵晓松, 范兴旺, 潘鑫, 甘国靖, 刘永伟, 郭瑞芳, 周晗, 王颖, 王若男, 崔逸凡. 流域水文遥感的科学问题与挑战[J]. 地球科学进展, 2020, 35(5): 488-496.
[9] 姚天次,卢宏玮,于庆,冯玮. 50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展, 2020, 35(5): 534-546.
[10] 刘磊,翁陈思,李书磊,胡帅,叶进,窦芳丽,商建. 太赫兹波被动遥感冰云研究现状及进展[J]. 地球科学进展, 2020, 35(12): 1211-1221.
[11] 李修仓,姜彤,吴萍. 水分再循环计算模型的研究进展及其展望[J]. 地球科学进展, 2020, 35(10): 1029-1040.
[12] 李浩杰,李弘毅,王建,郝晓华. 河冰遥感监测研究进展[J]. 地球科学进展, 2020, 35(10): 1041-1051.
[13] WangJingfeng,刘元波,张珂. 最大熵增地表蒸散模型:原理及应用综述[J]. 地球科学进展, 2019, 34(6): 596-605.
[14] 陈泽青,刘诚,胡启后,洪茜茜,刘浩然,邢成志,苏文静. 大气成分的遥感监测方法与应用[J]. 地球科学进展, 2019, 34(3): 255-264.
[15] 冉有华,李新. 中国多年冻土制图:进展、挑战与机遇[J]. 地球科学进展, 2019, 34(10): 1015-1027.
阅读次数
全文


摘要