地球科学进展 ›› 2000, Vol. 15 ›› Issue (4): 434 -441. doi: 10.11867/j.issn.1001-8166.2000.04.0434

综述与评述 上一篇    下一篇

大气—生物圈相互作用的层次性——兼对模式研究的述评
吕建华,季劲钧   
  1. 中国科学院大气物理研究所,北京 100029
  • 收稿日期:1999-08-09 修回日期:1999-10-07 出版日期:2000-08-01
  • 通讯作者: 吕建华(1968-),江苏常熟人,理学博士,主要从事全球变化研究。
  • 基金资助:

    国家重点基础研究规划项目“我国未来生存环境和北方干旱化变化趋势预测研究”(编号:G1999043400)的支持。

ON THE LEVELS OF ATMOSPHERE-BIOSPHERE INTERACTIONS-A REVIEW OF THE MODELS

LU Jian-hua,JI Jin-jun   

  1. Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China
  • Received:1999-08-09 Revised:1999-10-07 Online:2000-08-01 Published:2000-08-01

从大气和生物圈构成的层次性出发,提出了大气—生物圈相互作用的三个层次,在此框架基础上,分析了不同研究(模式)的特点,并强调指出建立大气—植物圈(植被)层次上的相互作用模式是使相互作用研究真正建立在动态的、完整的基础之上的关键。

The different levels of the interactions between the atmosphere and the biosphere are analysed through the three different levels of the composition of the Biosphere. From this framework, the characteristics of different atmosphere-biosphere interaction models are analysed and it is pointed out thatthe atmosphere and the biosphere are fully and dynamically coupled, and it is essential to build up the intereaction model at the level of atmophere-phytosphere(vegetation) in this paper.By the detailed description of land surface physical processes and physiological processes of vegetation-not only photosynthesis and respiration,but also other processes such as allocation and phenology—the physical fluxes and biogeo-chemical fluxes can be simulated simultaneously and influence each other in the model.

中图分类号: 

[1]Root T L, Schneider S H. Ecology and Climate: Research strategies and implications[J] .Science,1995,269:334~341.
[2]Ehleringer J R, Field C B. Scaling Physiological Processes:Leaf to Globe[M]. New York:Academic Press,1993.
[3]孙岚.陆面过程对气候影响的数值模拟研究[D].北京:中国科学院大气物理研究所, 1998.
[4]Walker B H.陆地生态系统对全球变化从景观到区域范围的效应[J].AMBIO(人类环境杂志,中文版),1994,23:67~73.
[5]Smith T M,Shugart H H, Bonan G B,et al. Modeling the response of vegetation to globe climate change[J]. Advances in Ecological Research,1992,22:93~116.
[6]Schulze E D, Kelliher F M,Korner C,et al.Relationships among maximum stomatal conductance,ecosystem surface conductance,carbon assimilation rate,and plant nitrogen nutrition: a global ecology scaling exercise[J]. Annu Rev Ecol Syst, 1994, 25:629~660.
[7]Sellers P J,Randall D A,Collatz G J,et al.A revised land surface parameterization(SiB2) for atmospheric GCMs, Part I:Model formulation[J]. J Climate,1996,9:676~705.
[8]Prentice I C,Cramer W,Harrison S P,et al.A global biome model based on plant physiology and dominance,soil properties and climate[J]. Journal of Biogeography, 1992,19:117~134.
[9]Larcher W.Physiological Plant Ecology(3rd ed)[M].Germany:Springer-Verlag,1995. 506p.
[10]Bonan G B.A Land Surface Model for the Ecological,Hydrological and Atmospheric Studies[R]. NCAR Technical Note TN/417. Boulder:NCAR,1996.150p.
[11]Jarvis P G.The interpretation of leaf water potential and stomatal conductance found in canopies in the field[J]. Phil Trans R Soc Lond (B),1976,273:593~610.
[12]Farquhar G D,Caemmerer S von,Berry J A.A biochemical model of photosynthetic CO2assimilationin leaves of C3 species[J]. Planta, 1980,149:79~90.
[13]Caemmerer S von,Farquhar G D.Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves[J]. Planta, 1981,153:376~387.
[14]Holdridge L R.Life Zone Ecology[M].Costa Rica:Tropical Science Center,1967.
[15]Henderson-Sellers A.Predicting generalized ecosystem groups with the NCAR GCM: First steps towards an interactive biosphere[J]. Journal of Climate,1990,3:917~940.
[16]Woodward F I,Smith T M,Emanuel W.A global land primary productivity and phyto-geography model[J]. Global Biogeochemical Cycles,1995,9:471~490.
[17]Neilson R P.A model for continental-scale vegetation distribution and water balance[J].Ecological Applications,1995,5:362~385.
[18]Ji Jinjun.A climate-vegetation interaction model: simulating physical and biological processes at the surface[J]. Journal of Biogeography,1995,22:445~451.
[19]Ji Jinjun,Hu Yuchun.A simple land surface process model for use in climate study[J]. Acta Meteor Sinica,1989,3:344~353.
[20]胡玉春.植被与大气、土壤相互作用的数值模拟[D].北京:中国科学院大气物理研究所,1995.
[21]季劲钧,余莉.地表面物理过程与生物地球化学过程耦合反馈机理的模拟研究[J].大气科学,1999,23:439~448.
[22]吕建华.区域性季节和年际尺度大气—植被相互作用的模拟研究[D].北京:中国科学院大气物理研究所,1999.
[23]Foley J A, Prentice I C,Ramankutty N,et al. An integrated biosphere model of land surface processes,terrestrial carbon banlance, and vegetation dynamics[J]. Global Biogeochemical Cycles,1996,10:603~628.
[24]Potter C S,Randerson J T,Field C B,et al. Terrestial ecosystem production: a process model based on global satellite and surface data[J]. Global Biogeochemical Cycles, 1993,7:811~841.
[25]Raich J W,RastetterE B,Melillo J M,et al. Potential net primary productivity in south America—Application of a global model[J]. Ecol Appl, 1991,1:399~429.
[26]Parton W J,Scurlock J,Ojima D S. Observations and modelling of biomass and soil organic matter dynamics for the grassland biome worldwide[J]. Global Biogeo-chemical Cycles,1993,7:785~809.
[27]Cramer W,Kicklighter D W,Bondeau A,et al.PIK Report,No.30: Comparing Global Models of Terrestrial Net Primary Productivity(NPP):Overview and Key Results[R]. Potsdam Institute for Climate Impact Research(PIK),1997.36p.
[28]Dickinson R E,Shaikh M,Bryant R,et al. Interactive canopies for a climate model[J]. Journal of Climate,1998,11:2 823~2 836.

[1] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[2] 姜继兰,刘屹岷,李建平,张人禾. 印度洋偶极子研究进展回顾[J]. 地球科学进展, 2021, 36(6): 579-591.
[3] 庞姗姗, 王喜冬, 刘海龙, 邵彩霞. 热带海洋盐度障碍层多尺度变异机理及其对海气相互作用的影响研究进展[J]. 地球科学进展, 2021, 36(2): 139-153.
[4] 夏松, 刘鹏, 江志红, 程军. CMIP5CMIP6模式在历史试验下对 AMOPDO的模拟评估[J]. 地球科学进展, 2021, 36(1): 58-68.
[5] 于德永,郝蕊芳. 生态系统服务研究进展与展望[J]. 地球科学进展, 2020, 35(8): 804-815.
[6] 王卷乐,石蕾,王玉洁,高孟绪,徐波,王超,王明明,王艳杰,周业智. 科学数据汇聚的模式分析及对我国的发展建议[J]. 地球科学进展, 2020, 35(8): 839-847.
[7] 王冰笛, 李清泉, 沈新勇, 董李丽, 汪方, 王涛, 梁信忠. 区域气候模式 CWRF对东亚冬季风气候特征的模拟[J]. 地球科学进展, 2020, 35(3): 319-330.
[8] 曹天正, 韩冬梅, 宋献方, 刘伟, 杜荻. 滨海地区地表水—地下水相互作用研究进展的文献计量分析[J]. 地球科学进展, 2020, 35(2): 154-166.
[9] 杜江民,龙鹏宇,杨鹏,丁强,胡秀银,李伟,柏杨,盛军. 中国陆相湖盆碳酸盐岩储集层特征及其成藏条件[J]. 地球科学进展, 2020, 35(1): 52-69.
[10] 康文敏,蔡芫镔,郑慧祯. 福州城市地表温度时空变化与贡献度研究[J]. 地球科学进展, 2020, 35(1): 88-100.
[11] 高丽,陈静,郑嘉雯,陈权亮. 极端天气的数值模式集合预报研究进展[J]. 地球科学进展, 2019, 34(7): 706-716.
[12] 杨韵, 李建平, 谢飞, 冯娟, 孙诚. 热带北大西洋模态年际变率的研究进展与展望[J]. 地球科学进展, 2018, 33(8): 808-817.
[13] 王小垚, 曾联波, 魏荷花, 孙建芳, 史今雄, 徐翔, 曹东升, 陆诗磊. 碳酸盐岩储层缝洞储集体研究进展[J]. 地球科学进展, 2018, 33(8): 818-832.
[14] 龚凌枫, 唐川, 李宁, 陈明, 杨成长, 蔡英桦. 急陡沟道物源起动模式及水土耦合破坏机制分析[J]. 地球科学进展, 2018, 33(8): 842-851.
[15] 安俊岭, 陈勇, 屈玉, 陈琦, 庄炳亮, 张平文, 吴其重, 徐勤武, 曹乐, 姜海梅, 陈学舜, 郑捷. 全耦合空气质量预报模式系统[J]. 地球科学进展, 2018, 33(5): 445-454.
阅读次数
全文


摘要