[1]Root T L, Schneider S H. Ecology and Climate: Research strategies and implications[J] .Science,1995,269:334~341. [2]Ehleringer J R, Field C B. Scaling Physiological Processes:Leaf to Globe[M]. New York:Academic Press,1993. [3]孙岚.陆面过程对气候影响的数值模拟研究[D].北京:中国科学院大气物理研究所, 1998. [4]Walker B H.陆地生态系统对全球变化从景观到区域范围的效应[J].AMBIO(人类环境杂志,中文版),1994,23:67~73. [5]Smith T M,Shugart H H, Bonan G B,et al. Modeling the response of vegetation to globe climate change[J]. Advances in Ecological Research,1992,22:93~116. [6]Schulze E D, Kelliher F M,Korner C,et al.Relationships among maximum stomatal conductance,ecosystem surface conductance,carbon assimilation rate,and plant nitrogen nutrition: a global ecology scaling exercise[J]. Annu Rev Ecol Syst, 1994, 25:629~660. [7]Sellers P J,Randall D A,Collatz G J,et al.A revised land surface parameterization(SiB2) for atmospheric GCMs, Part I:Model formulation[J]. J Climate,1996,9:676~705. [8]Prentice I C,Cramer W,Harrison S P,et al.A global biome model based on plant physiology and dominance,soil properties and climate[J]. Journal of Biogeography, 1992,19:117~134. [9]Larcher W.Physiological Plant Ecology(3rd ed)[M].Germany:Springer-Verlag,1995. 506p. [10]Bonan G B.A Land Surface Model for the Ecological,Hydrological and Atmospheric Studies[R]. NCAR Technical Note TN/417. Boulder:NCAR,1996.150p. [11]Jarvis P G.The interpretation of leaf water potential and stomatal conductance found in canopies in the field[J]. Phil Trans R Soc Lond (B),1976,273:593~610. [12]Farquhar G D,Caemmerer S von,Berry J A.A biochemical model of photosynthetic CO2assimilationin leaves of C3 species[J]. Planta, 1980,149:79~90. [13]Caemmerer S von,Farquhar G D.Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves[J]. Planta, 1981,153:376~387. [14]Holdridge L R.Life Zone Ecology[M].Costa Rica:Tropical Science Center,1967. [15]Henderson-Sellers A.Predicting generalized ecosystem groups with the NCAR GCM: First steps towards an interactive biosphere[J]. Journal of Climate,1990,3:917~940. [16]Woodward F I,Smith T M,Emanuel W.A global land primary productivity and phyto-geography model[J]. Global Biogeochemical Cycles,1995,9:471~490. [17]Neilson R P.A model for continental-scale vegetation distribution and water balance[J].Ecological Applications,1995,5:362~385. [18]Ji Jinjun.A climate-vegetation interaction model: simulating physical and biological processes at the surface[J]. Journal of Biogeography,1995,22:445~451. [19]Ji Jinjun,Hu Yuchun.A simple land surface process model for use in climate study[J]. Acta Meteor Sinica,1989,3:344~353. [20]胡玉春.植被与大气、土壤相互作用的数值模拟[D].北京:中国科学院大气物理研究所,1995. [21]季劲钧,余莉.地表面物理过程与生物地球化学过程耦合反馈机理的模拟研究[J].大气科学,1999,23:439~448. [22]吕建华.区域性季节和年际尺度大气—植被相互作用的模拟研究[D].北京:中国科学院大气物理研究所,1999. [23]Foley J A, Prentice I C,Ramankutty N,et al. An integrated biosphere model of land surface processes,terrestrial carbon banlance, and vegetation dynamics[J]. Global Biogeochemical Cycles,1996,10:603~628. [24]Potter C S,Randerson J T,Field C B,et al. Terrestial ecosystem production: a process model based on global satellite and surface data[J]. Global Biogeochemical Cycles, 1993,7:811~841. [25]Raich J W,RastetterE B,Melillo J M,et al. Potential net primary productivity in south America—Application of a global model[J]. Ecol Appl, 1991,1:399~429. [26]Parton W J,Scurlock J,Ojima D S. Observations and modelling of biomass and soil organic matter dynamics for the grassland biome worldwide[J]. Global Biogeo-chemical Cycles,1993,7:785~809. [27]Cramer W,Kicklighter D W,Bondeau A,et al.PIK Report,No.30: Comparing Global Models of Terrestrial Net Primary Productivity(NPP):Overview and Key Results[R]. Potsdam Institute for Climate Impact Research(PIK),1997.36p. [28]Dickinson R E,Shaikh M,Bryant R,et al. Interactive canopies for a climate model[J]. Journal of Climate,1998,11:2 823~2 836. |