地球科学进展 ›› 2000, Vol. 15 ›› Issue (4): 426 -433. doi: 10.11867/j.issn.1001-8166.2000.04.0426

综述与评述 上一篇    下一篇

造山带逆冲推覆构造研究的主要新进展
吴运高,李继亮,樊敬亮   
  1. ①中国科学院地质与地球物理研究所岩石圈构造演化开放实验室,北京 100029;②石油大学地球科学系,北京 昌平 102249
  • 收稿日期:1999-09-02 修回日期:2000-01-04 出版日期:2000-08-01
  • 通讯作者: 吴运高(1967-),男,湖南人,博士生,主要从事大地构造学与构造地质学研究。
  • 基金资助:

    中国科学院资源与生态环境研究重大项目“中国大陆岩石圈构造及其地球动力学背景”(编号:KZ951-A1-401)之Ⅱ-2课题“碰撞造山带运动学研究”资助。

THE MAJOR PROGRESSES IN THE RESEARCHES ON THE THRUST AND NAPPE TECTONICS OF OROGENIC BELTS

WU Yun-gao ,LI Ji-liang,FAN Jing-liang
  

  1. ①Laboratory of Lithosphere Tectonic Evolution,Institute of Geology and Geophysics,The Chinese Academy of Sciences,Beijing 100029,China;②The Department of Earth Science,University of Petroleum,Beijing102249,China
  • Received:1999-09-02 Revised:2000-01-04 Online:2000-08-01 Published:2000-08-01

造山带逆冲推覆构造研究是造山带研究中最为重要的课题之一。造山带外带即前陆褶皱冲断带(主要发育盖层冲断推覆体,一般遵循薄皮构造变形规则)与造山带内带(主要是基底褶皱推覆体,呈现厚皮构造变形规律)结晶逆冲推覆构造的几何学、运动学特征存在较大差异,二者形成机制也不相同,但其间仍有紧密的联系。近20年来造山带逆冲推覆构造研究的主要新进展为:①前陆褶皱冲断带逆冲断层及其相关褶皱的几何学特征分析已趋定量化,对其组合类型与演化时序有了更全面的认识,且对前陆褶皱冲断带的发展演化模式取得了新的共识,即遵循临界库仑楔模式;②平衡剖面技术在前陆褶皱冲断带的应用已从二维平衡与复原演进到三维平衡与复原,且日渐计算机化;③对造山带内带结晶基底逆冲推覆构造的主要类型(C型与F型逆冲岩席)及其特征已有较深的理解;④对前陆褶皱冲断带与结晶基底逆冲构造的相互关系及其形成演化模式有了新认识。目前造山带逆冲推覆构造研究过程中存在的主要问题为:①造山带内带结晶逆冲推覆构造的研究比较薄弱;②造山带晚期走滑构造及伸展构造的叠加与改造使得造山带内结晶逆冲推覆构造更为复杂化,致使其研究难度加大;③全面、精细的造山带深部地球物理资料较缺乏;④造山带内结晶逆冲岩席变形变质历史与超高压变质岩的形成机制及折返过程之间的关系尚未揭示清楚。在今后研究过程中应加强对上述问题的深入研究。

The researches on the thrust and nappe tectonics of orogenic belts are one of the important problems in the studies of orogenic belts. Cover thrust nappes, developing mainly in the outer part of the orogenic belts or the foreland fold and thrust belts, formed by the rule of thin-skinned tectonics; however,basement fold nappes, occurring mainly in the inner part of the orogenic belts, developed by the rule of thick-skinned tectonics. Although there are many big differences not only in their geometric and kinematic characteristics but also in their mechanics of formation, cover thrust nappes are directly related to base-ment fold nappes. The major progresses in the researches on the thrust and nappe tectonics of orogenic belts ,made in the last two decades, are summarized as follows:①apart from that the analyses of the geometric characteristics of the thrusts and their related folds in the foreland fold and thrust belts have become quantified, more comprehensive knowledge of their composite types and developing sequences has come to its existence, and common senses of the development models of the foreland fold and thrust belts have been achieved, which agree to the critical Coulomb taper model;②the techniques of cross-section balancing and restoring ,applied in the foreland fold and thrust belts, have changed from 2-dimensional approaches to 3-dimensional ones and become more and more computerized;③more deep understanding of the main types of the crystalline basement thrust and nappe tectonics C-type and F-type thrust sheets and their characteristics in the inner part of orogenic belts has been obtained;④new knowledge of the relationship between foreland fold and thrust belts and the crystalline basement thrust and nappe tectonics in the inner part of
orogenic belts and of their development models has uncovered. So far the key problems lying in the studies of the above-mentioned topics include:①the studies of the crystalline basement thrust and nappe tectonics in the inner part of orogenic belts are relatively weak;②the crystalline basement thrust and nappe tectonics in the inner part of orogenic belts became more complicated as result of their being overlapped and reformed by the strike-slip tectonics and the extensional tectonics formed in the late stage of orogenic belts,which make the studies of that more difficult;③more comprehensive and detailed deep geophysical data is short;④the relationship between the deformational and metamorphic history of the crystalline thrust sheets in orogenic belts and the formation mechanism and the exhumation process of UHP metamorphic rocks is still unclear. The above-mentioned problems should be paid more attention to, which also will become the studies trends in this field in the near future.

中图分类号: 

[1]李继亮.造山带研究的缩微景观[J].地学前缘, 1999,6(3):1~3.
[2]李继亮.碰撞造山带大地构造相[A].见:李清波,戴金星,刘如琦,李继亮主编.现代地质科学研究论文集(上)[C].南京:南京大学出版社,1992. 9~22
[3]李继亮.中国东南地区大地构造基本问题[A].见:李继亮主编.中国东南海陆岩石圈结构与演化研究[C].北京:中国科学技术出版社,1992. 3~16.
[4]Escher A, Masson H, Steck A. Nappe geometry in the Western Swiss Alps [J]. J Struct Geol, 1993,15(3~5): 501~509.
[5]Epard J L, Escher A. Transition from basement to cover: a geometric model [J]. J Struct Geol, 1996, 18(5): 533~548.
[6]Eshcer A, Beaumont C. Formation, burial and exhumation of basement nappes at crustal scale: a geometric model based on the Western Swiss-Italian Alps [J]. J Struct Geol, 1997, 19(7): 955~974.
[7]Hatcher R D Jr, Hooper R J. Evolution of crystalline thrust sheets in the internal parts of mountain chains [A]. In: Mc-clay K R, ed. Thrust Tectonics[C]. London: Chapman and Hall, 1992. 217~233.
[8]Hatcher R D Jr, Williams R T. Mechanical model for single thrust sheets Part 1: Crystalline thrust sheets and their relationships to the mechanical/thermal behaviour of orogenic belts [J]. Geol Soc Amer Bull, 1986, 97: 975~985.
[9]Hatcher R D Jr. Structural geology-principles, concepts, and problems [M]. New Jersey: Prentice-Hall Inc, 1995. 525.
[10]吴正文,柴育成,黄万夫,等.秦岭造山带的推覆构造格局[A].见:叶连俊,钱祥麟,张国伟主编.秦岭造山带学术讨论会论文选集[C].西安:西北大学出版社, 1991. 111~120.
[11]郝杰,刘小汉.桐柏-大别碰撞造山带大型推覆-滑脱构造及其演化[J].地质科学, 1988, 23(1): 1~9.
[12]徐树桐,董树文,周海渊,等.大别山东段(安徽)大别杂岩中的断层构造岩和推覆构造[J].科学通报, 1983, 29(5): 298~301.
[13]刘和甫,梁慧社,蔡立国,等.川西龙门山冲断席构造样式与前陆盆地演化[J].地质学报, 1994, 68(2): 101~118.
[14]卢华复,阎吉柱,李鹏举,等.四川前龙门山中南段推覆构造及其与天然气藏关系[J].南京大学学报(地球科学), 1993,5(2): 141~147.
[15]林茂炳,吴山.龙门山推覆构造变形特征[A].见:罗志立,赵银奎,刘树根,等编.龙门山造山带的崛起和四川盆地的形成与演化[C].成都:成都科技大学出版社, 1994. 179~187.
[16]陶晓风.龙门山南段推覆构造与前陆盆地演化[J].成都理工学院学报, 1999, 26(1): 73~77.
[17]陈海泓,孙枢,李继亮,等.雪峰山大地构造的基本特征初探[J].地质科学,1993, 28(3): 201~209.
[18]刘和甫,梁慧社,蔡立国,等.天山两侧前陆冲断席构造样式与前陆盆地演化[J].地球科学,1994, 19(6): 727~741.
[19]舒良树,马瑞士,郭令智,等.天山东段推覆构造研究[J].地质科学, 1997, 32(3): 337~350.
[20]Mcclay K R, Price N J, eds. Thrust and nappe tectonics[C]. London: Blackwell Scientific Publications, 1981. 539.
[21]Mcclay K R, ed. Thrust Tectonics[M]. London: Chapman and Hall, 1992. 447.
[22]Platt J P, Coward M P, Deramond J,et al. Thrusting and deformation[J]. Journal of Structural Geology, 1986, 8:215~483.
[23]Elliott D E. The energy balance and deformation mechanisms of thrust sheets[J]. Philosophical Transactions of the Royal Society of London, 1976, 283: 289~312.
[24]Chapple W M. Mechanics of thin-skinned fold-and-thrust belts[J]. Geological Society of America Bulletin, 1978, 89:1 189~1 198.
[25]Dahlen F A, Suppe J, Davis D. Mechanics of fold-and-thrust belts and accretionary wedges:Cohesive Coulomb theory [J].Journal of Geophysical Research, 1984, 89: 10 087~10 101.
[26]Dahlen F A. Critical taper model of fold-and-thrust belts and accretionary wedges [J]. Annual Reviews of Earth and Plan-etary Sciences, 1990,18: 55~99.
[27]Davis D, Suppe J, Dahlen F A. Mechanics of fold-and-thrust belts and accretionary wedges[J]. Journl of Geophysical Research, 1983, 88: 1 153~1 172.
[28]Dahlen F A, Suppe J. Mechanics, growth and erosion of mountain belts[J]. Geological Society of America Special Paper, 1988, 218: 161~178.
[29]Willett S D. Dynamic and kinematic growth and change of a Coulomb wedge[A]. In: McClay K R, ed. Thrust Tectonics[C]. London: Chapman and Hall, 1992.
[30]Woodward N B. Geological applicability of critical-wedge thrust belt models[J]. Geological Society of America Bulletin, 1987, 99: 827~832.
[31]Bally A W, Gordy P L, Stewart G A. Structure, seismic data and orogenic evolution of the southern Canadian Rockies[J]. Canadian Petroleum Geology Bulletin, 1966,14: 337~381.
[32]Dahlstrom C D A. Balanced cross-sections[J]. Canadian Journal of Earth Sciences, 1969, 6: 743~757.
[33]Price R A. The Cordilleran foreland thrust and fold belt in the southern Canadian Rockies [A], In: Mcclay K R, Price J, eds. Thrust and Nappe Tectonics[C]. London: Blackwell Scientific Publications, 1981. 427~448.
[34]Rich J L. Mechanics of low-angle overthrust faulting as illustrated by Cumberland thrust block, Virginia, Kentucky and Tennessee [J]. AAPG Bull, 1934, 18: 1 584~1 596.
[35]Jamison W R. Geometric analyses of fold development in overthrust terranes[J]. Journal of Structural Geology, 1987,9: 207~219.
[36]Suppe J. Geometry and kinematics of fault-bend folding[J].Amer Jour of Sci, 1983, 283: 648~721.
[37]Mitra S. Fault-propagation folds: geometry, kinematic evolution, and hydrocarbon traps[J]. American Association of Petroleum Geologists Bulletin, 1990, 74: 921~945.
[38]Mosar J, Suppe J. Role of shear in fault-propagation folding[A]. In: McClay K R, ed. Thrust Tectonics[C]. London:Chapman and Hall, 1992.123~132.
[39]Suppe J. Principles of Structural Geology[M]. New Jersey:Englewood Cliffs, Prentice-Hall, 1985. 537p.
[40]Suppe J, Medwedeff D A. Fault-propagation folding[J]. Geological Society of America Bulletin, 1984, 16: 670.
[41]Suppe J, Medwedeff D A. Geometry and kinematics of fault-propagation folding[J]. Ecologae Geol Helv, 1990, 83(3):409~454.
[42]Mitra S, Namson J. Equal-area balancing[J]. American Journal of Science, 1989, 289: 563~599.
[43]Suppe J, Chou G T, Hook S C. Rates of folding and faulting determined from growth strata[A]. In: McClay K R, ed.Thrust Tectonics[C]. London: Chapman and Hall, 1992.105~121.
[44]Lu H F, Jia D, Chen C M,et al. Evidence for growth fault-bend folds in the Tarim Basin and its implications for fault-slip rates in the Mesozoic and Cenozoic [A]. Proc 30th Inter Geol Congr[C]. Beijing, 1997, 14: 253~262.
[45]Boyer S E, Elliott D. Thrust systems[J]. AAPG, 1982, 66:1 196~1 230.
[46]Dahlstrom C D A. Structural geology in the eastern margin of the Canadian Rocky Mountains [ J] . Bull Canadian Petroleum Geology, 1970, 18: 332~406.
[47]Mitra S. Duplex structures and imbricate thrust systems:Geometry, structural position, and hydrocarbon potential[J]. AAPG, 1986, 70: 1 087~1 112.
[48]Woodward N B, Boyer S E, Suppe J. Balanced Geological Cross-sections: an Essential Technique in Geological Research and Exploration[M]. American Geophysical Union,1989.
[49]Boyer S E. Geometric evidence for synchronous thrusting in the southern Alberta and northeast Montana thrust belts[A]. In: Mcclay K R, ed. Thrust Tectonics[C]. London:Chapman and Hall, 1992. 377~390.
[50]Fischer M P, Woodward N B. The geometric evolution of foreland thrust systems [A]. In: McClay K R, ed. Thrust Tectonics [C]. London: Chapman and Hall, 1992. 181~189.
[51]Hardy S, Poblet J. Geometric and numerical model of progressive limb rotation in detachment folds [J]. Geology,1994, 22: 371~374.
[52]Poblet J, Hardy S. Reverse modeling of detachment folds:application to the Pico del Agulia anticline in the South Central Pyrenees (Spain) [J]. Journal of Structural Geology,1995, 17(12): 1 707~1 724.
[53]Zapata T R, Allmendinger R W. Growth strata records of instantaneous and progressive limb rotation in the Precordillera thrust belt and Bermejo basin, Argentina [J]. Tectonics,1996, 15(5): 1 065~1 083.
[54]Homza. T X, Wallace W K. Geometric and kinematic models for detachment folds with fixed and variable detachment depth [J]. Journal of Structural Geology, 1995, 17(4): 575~588.
[55]Poblet J, McClay K, Storti F,et al. Geometries of syntectonic sediments associated with single-layer detachment folds[J]. Journal of Structural Geology, 1997,17(3~4): 369~381.
[56]Elliott D E. The construction of balanced cross section [J].Journal of Structural Geology, 1983, 5: 101.
[57]Woodward N B, Boyer S E, Suppe J. Balanced Geological Cross-sections [M]. American Geophysical Union Short Course in Geology, 1989,6: 132.贾维民,杜秀霞译.平衡地质剖面——地质研究与勘探工作的一种重要方法[M].武汉:中国地质大学出版社, 1991.170p.
[58]Enfield M A, Coward M P. The structure of the West Orkney Basin, northern Scotland [J]. Journal of the Geological Society, London, 1987, 144: 871~884.
[59]Laubscher H. The kinematic puzzle of the Neogene Northern Andes [A]. In: Schaer J P, Rodgers J, eds. The Anatomy of Mountain Ranges[C]. Princeton: Princeton University Press, 1987. 211~227.
[60]Bitterli T. The kinematic evolution of a classical Jura fold: a reinterpretation based on 3-dimensional balancing techniques (Weissenstein Anticline, Jura Mountains, Switzerland)[J].Eclogae Geologicae Helvetiae, 1990, 83: 493~511.
[61]Mitra S. Three-dimensional geometry and kinematic evolution of the Pine Mountain thrust system, southern Appalachians [J]. Geol Soc Amer Bull, 1988, 100: 72~95.
[62]Mitra, S. Balanced structural interpretations in fold and thrust belts[A]. In: Mitra S, Fisher G, ed. Structural Geology of Fold and Thrust Belts[C]. Baltimore: Johns Hopkins University Press, 1992. 53~77.
[63]Mason R A. Structure of the Alice anticline, Papua New Guinea: serial balanced cross-sections and their restoration[J]. Journal of Structural Geology, 1997, 19(5): 719~734.
[64]柴育成,王思敬,李继亮,等.秦岭碰撞造山带嵩县—神龙架地壳构造平衡剖面[A].见:王思敬,易善锋主编. 90年代的地质科学[C].北京:海洋出版社, 1992. 207~212.
[65]杨庚,钱祥麟,李茂松,等.塔里木北缘库车盆地冲断构造平衡地质剖面研究[J].地球科学, 1996, 21(3): 295~299.
[66]陈伟,卢华复,施泽进,等.平衡剖面的正演计算及其应用[J].地质科学,1993, 28(2): 117~126.
[67]Ramsay J G. Shear zone' s geometry: a review [J]. Jour Struct Geol, 1980, 2: 83~99.
[68]Escher A, Hunziker J, Marthaler M,et al. Geologic framework and structural evolution of the Western Swiss-Italian Alps [A]. In: Pfiffner O A, Lehner P, Heitzmann P,et al eds. Deep Structure of the Swiss Alps Results of the National Research Program 20 (NRP 20) [C]. Basel: Birkhauser,1997. 205~222.
[69]Marchant R. The underground of the Western Alps [J].Mem Geol Lausanne, 1993, 15: 1~137.
[70]Marchant R, Steck A, Escher A,et al. An interpretation of the deep seismic lines from the Penninic Alps of Valais(Switzerland) [J]. Bull Soc Geol Fr, 1993, 164: 81~100.
[71]朱志澄.逆冲推覆构造研究进展和今后探索趋向[J].地学前缘, 1995,2(1~2): 51~58.

 

[1] 白玲,宋博文,李国辉,江勇. 喜马拉雅造山带地震活动及其相关地质灾害[J]. 地球科学进展, 2019, 34(6): 629-639.
[2] 田自强, 王勇生, 胡召齐, 白桥. 大别造山带内部变沉积岩锆石LA-ICP MS U-Pb定年及其大地构造意义[J]. 地球科学进展, 2018, 33(9): 945-957.
[3] 王晓先, 张进江, 王佳敏. 喜马拉雅早古生代岩浆事件:以吉隆和聂拉木眼球状片麻岩为例[J]. 地球科学进展, 2016, 31(4): 391-402.
[4] 丁汝鑫,王利,许长海,周祖翼. 大别造山带与毗邻沉积盆地间剥蚀沉积关系的裂变径迹热史模拟定量对比[J]. 地球科学进展, 2009, 24(8): 942-946.
[5] 戴朝成,郑荣才,朱如凯,翟文亮,高红灿. 四川类前陆盆地须家河组震积岩的发现及其研究意义[J]. 地球科学进展, 2009, 24(2): 172-180.
[6] 李江海,侯贵廷,刘守偈. 早期碰撞造山过程与板块构造:前寒武纪地质研究的机遇和挑战[J]. 地球科学进展, 2006, 21(8): 843-848.
[7] 周建波;程日辉;刘鹏举;刘建辉. 浅变质岩在示踪大别—苏鲁造山带大陆板块俯冲与折返过程中的意义[J]. 地球科学进展, 2004, 19(5): 736-742.
[8] 杨坤光,刘强. 花岗岩构造与侵位机制研究进展[J]. 地球科学进展, 2002, 17(4): 546-550.
[9] 武红岭,董树文. 大别造山带构造超压形成的碰撞力学机理[J]. 地球科学进展, 2001, 16(4): 478-483.
[10] 肖文交,周火兆秀,杨振宇,赵西西. 大别—郯庐—苏鲁造山带复合旋转拼贴作用[J]. 地球科学进展, 2000, 15(2): 147-153.
[11] 程胜高,吴登定,陈德兴. 中国中央造山带资源环境态势与可持续发展对策[J]. 地球科学进展, 1999, 14(5): 487-491.
[12] 陈冠宝,徐树桐,石永红. 皖南变质岩区古生物化石的发现和研究进展[J]. 地球科学进展, 1999, 14(2): 140-146.
[13] 周鼎武,张成立,刘颖宇. 大陆造山带基底岩块中的基性岩墙群研究——以南秦岭武当地块为例[J]. 地球科学进展, 1998, 13(2): 151-156.
[14] 冯益民. 祁连造山带研究概况——历史、现状及展望[J]. 地球科学进展, 1997, 12(4): 307-314.
[15] 左国朝,吴汉泉. 北祁连中段早古生代双向俯冲—碰撞造山模式剖析[J]. 地球科学进展, 1997, 12(4): 315-323.
阅读次数
全文


摘要