地球科学进展 ›› 1996, Vol. 11 ›› Issue (5): 446 -452. doi: 10.11867/j.issn.1001-8166.1996.05.0446

学术研究动态 上一篇    下一篇

地慢的碳同位素
储雪蕾   
  1. 中国矿物资源探查研究中心 北京 100101
  • 收稿日期:1995-12-12 修回日期:1996-03-04 出版日期:1996-10-01
  • 通讯作者: 储雪雷,男,1946年12月出生,副研究员,现从事稳定同位素地球化学研究.

CARBON ISOTOPES IN MANTLE

Chu Xuelei   

  1. The Research Center of Mineral Resources Exploration,Chinese Academy of Sciences,Beijing 100101
  • Received:1995-12-12 Revised:1996-03-04 Online:1996-10-01 Published:1996-09-01

近年来对金刚石、金伯利岩、碳酸岩、大洋玄武岩、地幔包体等地幔样品的碳同位素越来越多的研究发现,地幔碳的同位素主要集中分布在-5‰附近,而在-15‰~-25‰。区段有另一较弱的分布。目前的地幔碳的物相转变、沉积碳的俯冲和地幔去气等假说都很难解释这种碳同位素分布,原始地幔可能是碳同位素不均一的。

Recently,many carbon isotopic investigations for the mantle samples,such as diamond,kimberlites,carbonatites,oceanic basalts and mantle xenoliths,have shown that a very concentrated distribution is around -5‰,and a relatively weak distribution is from about -15‰ to -25‰ in the mantle carbon isotopes.This type of carbon isotopic distributions is difficult to explain by the current hypotheses,such as phase transformation of carboniferous matters,subduction of sedimentary carbon or mantle degassing,and so it is possible that the primordial mantle is heterogeneous in carbon isotopes. 

[l]  Craig H. The geochemistry of the stable carbon isotopes. Geochim Cosmochim Acta,1953,3:53-92.
[2] Wickman F E. The cycle of carbon and the stable carbon isotopes. Geochim Cosmochim Acta, 1956,9:136-153.
[3]陈锦石,陈文正.碳同位素地质学概论.北京:地质出版社,1982:157.
[4] Kyser T K. Stable isotope variations in the mantle. Reviews in Mineralogy,1986,16:491-559.
[5] Defines P.  Mantle carbon;concentration,mode of ovcurrence, and isotopic composition.  In:Schidlowski M et al.(eds). Early organic evolution:implications for mineral and energy resources. Berlin:Springer-Verlag. 1992.  133-146.
[6] Pineau F, Methez E A. Carbon isotopes in xenoliths from the Hualalai volcano, Hawaii, and the generation of isotopic variability. Geochim Cosmochim Acta, 1990,54:2117-2127.
[7]Galimov E M. The relation between formation conditions and variations in isotope composition of diamonds. Geochem Intern ,198 5,22(1):118-142.
[8] Jaques A L, O'Neill H St C,Smith C B. Diamondiferous peridotite xenoliths from the Argyle (AK1) lamproite pipe,Western Australia. Contrib Mineral Petrol,1990, 104:255-276.
[9]Defines P, Harris J W,Gurney J J. Carbon isotopic composition, nitrogen content and inclusion composition of diamonds from the Roberts Victor kimberlite, South Africa; evidence for 13C depletion in the mantle. Geochim Cosmochim Acta,1987,51:1227-1243.
[10]Defines P, Harris J W,Robinson D N, et al. Carbon and oxygen isotope variations in diamond and graphite eclogites from Orapa,Botswana. Geochim Cosmochim Acta,1991,55:515-524.
[11][Roedder E.  Liquid CO2 in olivine-bearing nodules and phenocrysts in basalts.  Am Mineral, 1965,50: 1746-1786.
[12]Murck B W,Burruss R C, Hollister L S.  Phase equilibris in fluid inclusions in ultramafic xenoliths.  Am Mineral,1978,63:40-46.
[13]Bergman S C,Dubessy J. CO2-CO fluid inclusions in a composite peridotite xenolith:implications for upper mantle oxygen fugacity. Contrib Mineral Petrol,1984, 85:1-13.
[14]Nadeau S,Pineau F, Javoy M,et al. Carbon concentrations and isotopic ratios in fluid-inclusion-bearing upper-mantle xenoliths among the northwestern margin of North America. Chem Geol, 1990,81:271-297.
[15]Porcelli D R,O'Nions R K, Galer S J G, et al. Isotopic relationships of volatile and lithophile trace elements in contimental ultramafic xenoliths. Contrib Mineral Petrol,1992,110:528-538.
[16]储雪雷,樊棋诚,刘若新,等.中国东部新生代玄武岩中超镁铁质捕虏体的CO2包裹体的碳、氧同位素初步研究.科学通报,1995, 40(1): 62-64.
[17]  Ohmoto H. Stable isotope geochemistry of ore deposits. Reviews in Mineralogy, 1986,16:431-559.
[18]   Milledge H J, Mendelssofin M J, Seal M, et al. Carbon isotopic variation in spectral type 1(I diamonds. Nature, 1983,303:791一792.
[19]   Kessen S E,Ringwood A E. Slab-mantle interactions, 2. the formation of diamonds. Chem Geol, 1989,78:97-118.
[20]   Holland H D. The chemistry of the atmosphere and oceans. New York:J.  Wiley and Sons, 1978.  351.
[21]   Sobolev N V,Shatsky V S. Diamond inclusions in garnets from metamorphic rocks: a new environment for diamond formation. Nature,1990,343: 742-745.
[22]   Javoy M,Pineau F, Iiyama I. Experimental determination of the isotopic fractionation between gaseous CO2 and carbon dissolved in tholeiitic magma. Contrib Mineral Petrol, 1978,67:35-39.
[23]   Defines P.  Regularities in the 13C and nitrogen content of the mantle revealed through studies of diamonds and the chemistry of their inclusions.  In:Ext Abstr Worksh Diamonds, 28th Int Geol Congr, Washington D C. 1989. 18-20.
[24]   Defines P. Stable isotope variations in carbonatites. In: Bell K (ed).Carbonatites-genesis and evolution.  1989. 301-359.

[1] 单森,齐远志,罗春乐,付文静,薛跃君,王旭晨. 中国主要河流输送陆源碳的同位素特征及影响因素[J]. 地球科学进展, 2020, 35(9): 948-961.
[2] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[3] 马晓旭,刘传联,金晓波,张洪瑞,马瑞罡. 长链烯酮在古大气二氧化碳分压重建的应用[J]. 地球科学进展, 2019, 34(3): 265-274.
[4] 罗中原,李江涛,贾国东. 深水珊瑚的食物及其地球化学意义[J]. 地球科学进展, 2019, 34(12): 1234-1242.
[5] 黄咸雨,张一鸣. 脂类单体碳同位素在湖沼古环境和古生态重建中的研究进展[J]. 地球科学进展, 2019, 34(1): 20-33.
[6] 张海龙, 陶舒琴, 于蒙, 赵美训. 生物标志物单体放射性碳同位素分析技术的发展[J]. 地球科学进展, 2017, 32(11): 1193-1203.
[7] 药瑛, 孙樯. 应用于流体包裹体CO 2碳同位素组成的拉曼光谱定量研究探讨[J]. 地球科学进展, 2016, 31(10): 1032-1040.
[8] 黄思静, 李小宁, 武文慧, 张萌, 胡作维, 刘四兵, 黄可可, 钟怡江. 显生宙海相碳酸盐高 δ 13C时期的古海洋学[J]. 地球科学进展, 2015, 30(11): 1185-1197.
[9] 刘贤赵, 张勇, 宿庆, 田艳林, 全斌, 王国安. 现代陆生植物碳同位素组成对气候变化的响应研究进展[J]. 地球科学进展, 2014, 29(12): 1341-1354.
[10] 陈雅丽,储雪蕾,张兴亮,翟明国. 纳米离子探针分析在地球早期生命研究中的应用[J]. 地球科学进展, 2013, 28(5): 588-596.
[11] 黄可可,黄思静,兰叶芳,胡作维. 早三叠世海相碳酸盐碳同位素研究进展[J]. 地球科学进展, 2013, 28(3): 357-365.
[12] 向 荣,刘 芳,陈 忠,颜 文,陈木宏. 冷泉区底栖有孔虫研究进展[J]. 地球科学进展, 2010, 25(2): 193-202.
[13] 章伟艳,金海燕,张富元,赵国军,杨克红,李宏亮,白有成,高为利. 长江口—杭州湾及其邻近海域不同粒级沉积有机碳分布特征[J]. 地球科学进展, 2009, 24(11): 1202-1209.
[14] 金海燕,翦知湣. 南海北部ODP 1144站中更新世气候转型期有孔虫稳定同位素古气候意义[J]. 地球科学进展, 2007, 22(9): 914-921.
[15] 李祥辉,陈云华,徐宝亮,AkihiroKano,ChizuruTakashima. 新生代深海冷水碳酸盐泥丘成因及IODP 307航次初步研究结果[J]. 地球科学进展, 2007, 22(7): 666-672.
阅读次数
全文


摘要