地球科学进展 ›› 2006, Vol. 21 ›› Issue (11): 1164 -1170. doi: 10.11867/j.issn.1001-8166.2006.11.1164

研究论文 上一篇    下一篇

乌鲁木齐河源1号冰川不溶微粒的季节变化特征
尤晓妮 1,李忠勤 2,王飞腾 2,朱宇曼 2   
  1. 1.天水师范学院,甘肃 天水 741000;2.中国科学院寒区旱区环境与工程研究所,甘肃 兰州 730000
  • 收稿日期:2006-04-07 修回日期:2006-10-09 出版日期:2006-11-15
  • 通讯作者: 尤晓妮 E-mail:zhuatang@tom.com
  • 基金资助:

    中国科学院寒区旱区环境与工程研究所引进国外杰出人才基金项目(编号CACX2003101);国家自然科学基金项目“天山乌鲁木齐河源1号冰川与奎屯河哈希勒根51号冰川冰雪过程观测与研究”(编号:40371028)和“干旱区周边山地冰芯中不溶微粒与粉尘记录研究”(编号:40301009)和“2000年来高分辨率气候环境记录研究”(编号:90102005);国家自然科学基金创新群体项目资助.

Seasonal Evolution of Insoluble Microparticles Stratigraphy in Glacier No.1 Percolation Zone, Eastern Tianshan, China

You Xiaoni 1,Li Zhongqin 2,Wang Feiteng 2,Zhu Yuman 2   

  1. 1.Tianshui Teacherc College, Tianshui 741000,China; 2.Key Laboratory of Ice Core and Clod Regions Environment, CAREERI, CAS,Lanzhou 730000, China
  • Received:2006-04-07 Revised:2006-10-09 Online:2006-11-15 Published:2006-11-15

冰芯中的不溶微粒是反映大气粉尘的良好指标,亦是冰芯定年的重要方法。为了探究不溶微粒在雪层中的季节变化特征,对采自乌鲁木齐河源1号冰川4 130 m处的雪冰样品进行不溶微粒分析。表层雪中粗微粒浓度在一年中有2个峰值,分别出现在12~3月、6~9月;总微粒只有一个峰值区,出现在4~8月。对比同期气象资料发现,其受降水、大气环流以及局地风影响显著。结合雪层物理剖面和微粒在雪层中的浓度发现:污化层是粗颗粒(直径大于10 μm)聚集的区域。对该粒径范围的微粒浓度峰值进行跟踪,发现不溶微粒在雪层中的浓度和位置变化与融水、物理成冰过程密切相关。

The atmospheric dust is one of the most important factors in the global climate changes. Its effects include the scatter and reflect of solar insolation, the supply to the Iron fertilizer to ocean, and its restrain to rain. The microparticles record in ice cores is an excellent proxy for atmospheric dust. Therefore,the processes involved in the evolution of vertical profiles of microparticle concentrations as well as their seasonal variation in surface snow were studied by weekly sampling a snow pit from September 2003 to September 2004 on Glacier No.1 in the eastern Tianshan. The development of the microparticle stratigraphy in the snow pit is closely related to the physical development of the snow-firn pack. The sampling site is located at 4130 m asl in the percolation zone of the glacier, and in addition to the effects of sublimation and wind erosion, melting plays a crucial role in both the physical and chemical evolution processes. During the winter season, aerosol concentrations in the surface layers are altered slightly by sublimation and wind erosion, and the concentrations are further modified as the wet season begins in late April. In contrast, aerosol stratigraphy in the deeper layers remains relatively unchanged through the winter. In early summer, as melting occurs in the upper part of the snow-firn pack, meltwater carries microparticles to different depths in the underlying snow-firn layers. At the end of the ablation season, all of the surface elements might be leached out from the upper layers.

中图分类号: 

[1] Thompson L G, Mosley-Thompson E, Davis M E, et al. Holocene-Late Pleistocene climatic ice core records from Qinghai-Tibetan plateau[J]. Science,1989, 246: 474-477.

[2] Marry Davies. Paleoclimate Records from Tibetan Plateau Ice Cores[R]. Reports on Doctor Research Work,2003.

[3] Wake C P, Mayewski P A, Li Z, et al. Modern eolian dust deposition in central Asia[J]. Tellus, 1994, 46B:220-223.

[4] Petit J R, Mounier L, Jouzel J, et al. Palaeoclimatological and chronological implications of the Vostok core dust record[J]. Nature, 1990, 343: 56-58.

[5] Fiacco R J, Palais J M, Germani M S, et al. Characteristics and possible source of a 1479 AD volcanic ash layer in a Greenland ice core[J]. Quaternary Research,1993, 39:267-273.

[6] Wu Guangjian. Study on Microparticle in the Muztagata and Guliya Ice Core[D].Lanzhou:CAREERI,CAS,2004.[邬光剑, 慕士塔格和古里雅冰芯中微粒记录研究[D].兰州:中国科学院寒区旱区环境与工程研究所,2004.]

[7] Ing G K T. A dust storm over central China[J]. Weather,1969, 27: 136-145.

[8] Jackson M L, Gillette D A, Danielsen E F, et al. Global dustfall during the quaternary as related to environments[J]. Soil Science,1973,116:135-145.

[9] John T, Merrill, Mitsuo Uematsu. Meteorological analysis of long range transport of mineral aerosols over the North Pacific[J]. Journal of Geophysical Research,1989, 94(D6):8 584-8 598.

[10] Uematsu M, Duce R A, Prospero J M, et al. Transport of mineral aerosol from Asia over the North Pacific ocean[J]. Journal of Geophysical Research,1983, 88:5 343-5 352.

[11] Prospero J M, Uematsu M, Savoie D L. Marine aerosol transport to the Pacific ocean[J]. Chemical Oceanography,1989,10:188-218.

[12] Gao Y, Arimoto R, Zhou M Y, et al. Relationships between the dust concentrations over Eastern Asia and the remote North Pacific[J]. Journal of Geophysical Research,1992, 97, D9:9 867-9 872.

[13] Liu Chunping, Yao Tandong, Thompson L G, et al. Microparticle concentration within the Dunde ice core and its relation to dust storm and climate since the little ice age[J]. Journal of Glaciology and Geocryology,1999, 21(1): 9-14. [刘纯平, 姚檀栋, Thompson L G, . 敦德冰芯中微粒含量与沙尘暴及气候的关系[J]. 冰川冻土, 1999, 21(1): 9-14.]

[14] Liu Chunping, Yao Tandong, Xie Shucheng. Characteristics of microparticle variation and record of atmospheric environment in Dunde ice core[J]. Marine Geology and Quaternary Geology, 1999, 19(3): 105-113. [刘纯平,姚檀栋,谢树成. 祁连山敦德冰芯微粒变化特征和大气环境记录[J]. 海洋地质与第四纪地质, 1999, 19(3): 105-113.]

[15] Yao Tandong, Jiao Keqin, Huang Cuilan, et al. Variations of atmospheric compositions and environment in the Northern Tibetan plateau since the last interglacial age[C]Proceedings of the Fifth Chinese Conference on Glaciology and Geocryology, Vol.2. Lanzhou: Gansu Culture Press,1996:818-827.[姚檀栋,焦克勤,皇翠兰,. 末次间冰期以来青藏高原北部大气成分和环境变化[C]中国地理学会冰川冻土第五届全国冰川冻土学大会论文集(下册). 兰州: 甘肃文化出版社,1996:818-827.]

[16] Davidson C I, Jaffrezo J L, Mosher, et al. Chemical constituents in the air and snow at Dye 3, Greenland—I. Seasonal variations[J]. Atmospheric Environment, 1993, 27A: 2 709-2 722.

[17] Dibb J E, Jaffrezo J L. Beryllium-7 and lead-210 in aerosol and snow in the Dye 3 gas, aerosol and snow sampling program[J]. Atmospheric Environment, 1993, 27A:2 751-2 760.

[18] Hamilton W L. Microparticles deposition on polar ice sheets[R]. Ohio State University, Institute of Polar Studies,1969.

[19] Thompson L G, Wayne L. Climatological implications of microparticle concentrations in the ice core from “Byrd” station, Western Antarctica[J]. Journal of Glaciology, 1975, 14 (72):433-444.

[20] Yuan Fangce, Mao Dehua. The Geomorphology of Xinjiang[M]. Beijing: Meteorological Press,1994.[袁方策,毛德华. 新疆地貌[M].北京:气象出版社,1994.]

[21] Luo Hongzhen. Hydrochemical features of the Glacier No.1 in the source region of Urumqi river, Tianshan[J]. Journal of Glaciology and Geocryology,1983,5(2): 55-64.[骆鸿珍.天山乌鲁木齐河源1号冰川的水化学特征[J].冰川冻土,1983,5(2):55-64.]

[22] Wang Dehui, Zhang Peiyuan. On the valley climate of Urumqi river in the Tianshan mountain [J]. Journal of Glaciology and Geocryology, 1985, 7(3):239-248.[王德辉,张怌远.天山乌鲁木齐河谷气候特征[J].冰川冻土,1985,7(3):239-248.]

[23] You Xiaoni, Li Zhongqin, Wang Feiteng. Study on time scale of snow-ice transformation through snow layer tracing method—Take Glacier No.1 at the headwaters of Urumqi river as an example[J]. Journal of Glaciology and Geocryology,2005,27(6):853-860. [尤晓妮,李忠勤,王飞腾. 利用雪层层位跟踪法研究暖型成冰作用的年限——以乌鲁木齐河源1号冰川为例[J]. 冰川冻土,2005,27(6):853-860.]

[24] Thompson L G. Microparticles, Ice Sheets and Climate[R]. Ohio State University. Institute of Polar Studies, Report 64,1977.

[25] Zhu Yuman, Li Zhongqin, You Xiaoni. Application and technique in glacier by accuSizer 780A optical particle sizer[J]. Modern Science Apparatus,2006.[朱宇曼,李忠勤,尤晓妮.利用光学粒径检测仪测定雪冰样品中的微粒[J].现代科学仪器,2006.]

[26] Ginot P, Kull C, Schwikowski M, et al. Effects of postdepositional processes on snow composition of a subtropical glacier (Cerro Tapado, Chilean Andes)[J]. Journal of Geophysical Research, 2001,106(23):32 375-32 386.

[27] Stichler W, Schotterer U, Frohlich K, et al. Influence of sublimation on stable isotope records recovered from high-altitude glaciers in the tropical Andes[J]. Journal of Geophysical Research,2001,106(19):22 613-22 620.

[28] Schulz O, de Jong C. Snowmelt and sublimation: Field experiments and modeling in the high Atlas mountains of Morocco[J]. Hydrology and Earth System Science, 2004, 8(6):1 076-1 089.

[29] Li Jiangfeng. The Climate of Xinjiang[M]. Beijing:Meteorology Press,1991:5-73.[李江风. 新疆气候[M].北京:气象出版社,1991:5-73.]

[1] 刘铸, 李忠勤. 近期冰川表面径流系数变化的影响因素----以天山乌鲁木齐河源1号冰川为例[J]. 地球科学进展, 2016, 31(1): 103-112.
[2] 曲宝晓, 宋金明, 袁华茂, 李学刚, 李 宁, 段丽琴,马清霞, 陈 鑫. 东海海—气界面二氧化碳通量的季节变化与控制因素研究进展[J]. 地球科学进展, 2013, 28(7): 783-793.
[3] 刘 力,井哲帆,杜建括. 玉龙雪山白水1号冰川运动速度测量与研究[J]. 地球科学进展, 2012, 27(9): 987-992.
[4] 王圣杰, 张明军, 李忠勤, 王飞腾, 张晓宇, 李亚举. 天山乌鲁木齐河源1号冰川雪层中NO - 3的演化过程[J]. 地球科学进展, 2011, 26(8): 897-904.
[5] 何琰,赵进平. 北欧海的锋面分布特征及其季节变化[J]. 地球科学进展, 2011, 26(10): 1079-1091.
[6] 李伟平,刘新,聂肃平,郭晓寅,史学丽. 气候模式中积雪覆盖率参数化方案的对比研究[J]. 地球科学进展, 2009, 24(5): 512-522.
[7] 李向应,刘时银,韩添丁,李忠勤,卢爱刚. 天山东部冰川雪坑离子浓度特征的对比研究[J]. 地球科学进展, 2008, 23(12): 1268-1276.
[8] 李向应,李忠勤,陈正华,赵中平,尤晓妮,朱宇漫. 天山乌鲁木齐河源1号冰川雪坑中pH值和电导率的季节变化及淋溶过程[J]. 地球科学进展, 2006, 21(5): 487-495.
[9] 兰健,洪洁莉,李丕学. 南海西部夏季冷涡的季节变化特征[J]. 地球科学进展, 2006, 21(11): 1145-1152.
[10] 徐建中,孙俊英,任贾文,秦大河. 青藏高原冰雪不溶微粒研究进展[J]. 地球科学进展, 2006, 21(03): 299-304.
[11] 韩添丁;刘时银;丁永建;焦克勤. 天山乌鲁木齐河源1号冰川物质平衡特征[J]. 地球科学进展, 2005, 20(3): 298-303.
[12] 陈举;施平;王东晓;杜岩. TRMM卫星降雨雷达观测的南海降雨空间结构和季节变化[J]. 地球科学进展, 2005, 20(1): 29-035.
[13] 刘强;王跃思;王明星. 北京地区大气主要温室气体的季节变化[J]. 地球科学进展, 2004, 19(5): 817-823.
[14] 谢云,刘宝元,伍永秋. 切沟中土壤水分的空间变化特征[J]. 地球科学进展, 2002, 17(2): 278-282.
[15] 上官行健; 王明星; 陈德章; 沈壬兴. 稻田土壤中的CH4产生[J]. 地球科学进展, 1993, 8(5): 1-12.
阅读次数
全文


摘要