地球科学进展 ›› 2020, Vol. 35 ›› Issue (5): 465 -477. doi: 10.11867/j.issn.1001-8166.2020.043

综述与评述 上一篇    下一篇

GDGTs在黄土古环境重建中的研究进展
田少华 1, 2( ),肖国桥 1, 2, 3( ),杨欢 1, 2, 3   
  1. 1.中国地质大学(武汉)地理与信息工程学院,湖北 武汉 430078
    2.中国地质大学(武汉)流域关键带 演化湖北省重点实验室,湖北 武汉 430074
    3.中国地质大学(武汉)生物地质与环境地质 国家重点实验室,湖北 武汉 430078
  • 收稿日期:2020-02-16 修回日期:2020-04-20 出版日期:2020-05-10
  • 通讯作者: 肖国桥 E-mail:tianshhu@163.com;xgqiaocug@gmail.com
  • 基金资助:
    国家自然科学基金项目“地质脂类记录的中国中东部晚中新世以来水热格局的时空演化”(41830319)

Application of Glycerol Dialkyl Glycerol Tetraether Lipids in Paleoenvironment Reconstruction of Loess Deposits: A Review of Recent Progresses

Shaohua Tian 1, 2( ),Guoqiao Xiao 1, 2, 3( ),Huan Yang 1, 2, 3   

  1. 1.School of Geography and Information Engineering, China University of Geosciences (Wuhan), Wuhan 430078, China
    2.Hubei Key Laboratory of Critical Zone Evolution, China University of Geosciences (Wuhan), Wuhan 430074, China
    3.State Key Laboratory of Biogeology and Environmental Geology,China University of Geosciences (Wuhan), Wuhan 430078, China
  • Received:2020-02-16 Revised:2020-04-20 Online:2020-05-10 Published:2020-06-05
  • Contact: Guoqiao Xiao E-mail:tianshhu@163.com;xgqiaocug@gmail.com
  • About author:Tian Shaohua (1995-), female, Ji‘nan City, Shandong Province, Master student. Research areas include quaternary geology. E-mail: tianshhu@163.com
  • Supported by:
    the National Natural Science Foundation of China "Spatiotemporal evolution of hydrothermal pattern in central and eastern China recorded by geological lipids since late Miocene"(41830319)

甘油二烷基甘油四醚广泛存在于黄土、泥炭、湖泊、海洋等各类沉积载体中,并有效地记录了地质历史时期的古环境信息。简要概述了甘油二烷基甘油四醚的结构、生物源以及常见的甘油二烷基甘油四醚陆地环境代用指标,重点阐述了甘油二烷基甘油四醚在黄土古环境重建中的研究进展,并提出了展望。主要研究进展包括: 甘油二烷基甘油四醚古环境指标在黄土古气候研究中得到了较广泛的应用,并重建了黄土高原地区过去80万年的古温度变化; 黄土高原地区温度变化主要受当地夏季太阳辐射驱动,并受植被下垫面调控; 黄土高原地区末次冰消期降水的增加明显滞后于温度的升高。甘油二烷基甘油四醚在黄土古环境研究中仍存在重建温度偏高、环境指标与气候因子关系复杂等问题。未来对新指标的开发以及区域性转换函数的建立和应用将有望进一步提高甘油二烷基甘油四醚在黄土古环境重建中的准确性,并为解决不同气候区空间上的水—热配置模式和气候变化机制提供依据。

The Glycerol Dialkyl Glycerol Tetraethers (GDGTs) occur ubiquitously in a wide range of environments, such as loess, peat, lake, soil, and ocean, which vary compositionally in response to environmental changes, and provide a series of biomarker proxies for paleoenvironmental reconstruction. This paper introduced the structures and biological sources of GDGTs, and reviewed the recent progresses of the application of the GDGTs proxies in the paleoenvironmental reconstruction of loess deposits. The main progresses include: The GDGTs proxies have been widely used in reconstructing the climate changes in loess deposits, and have established the temperature changes of last 800 ka for the Chinese Loess Plateau; Temperature variations in Chinese Loess Plateau displayed significant correlation with the Northern Hemisphere insolation, which may be also regulated by the surface vegetation conditions; and In the Chinese Loess Plateau, the increase in monsoon precipitation during the last deglaciation significantly lagged behind the rise of temperature. However, problems still exist in the current studies. For instance, the GDGTs-based temperature is likely overestimated, probably reflecting the temperature of warm season, and relationships between GDGT indices and climate factors are still unclear. In the future, the development of new proxies and more accurate regional calibrations based on the separation of 6- methyl GDGTs are expected to provide more reliable paleoenvironmental information, and will provide essential evidence for the evolution of hydrothermal pattern and mechanisms behind climate changes in different regions.

中图分类号: 

图1 GDGTs结构(据参考文献[ 13 ]修改)
(a)类异戊二烯GDGTs结构和(b)支链GDGTs结构;由于甲基位的异构,支链GDGTs具有5-和6-甲基支链GDGTs异构体
Fig.1 Molecular structures of GDGTsmodified after reference 13 ])
Molecular structures of iGDGTs(a)and bGDGTs(b); Due to the heterogeneity of the methyl positions,branched GDGTs have 5- and 6-methyl branched GDGTs isomer
表1 黄土中常见的 bGDGTs指标
Table 1 The common bGDGTs indicators in loess
表2 黄土中常见的古环境计算公式
Table 2 The formula for paletemperature and pH proxies in loess
图2 开展过GDGTs研究的黄土剖面位置
Fig.2 Location of the loess profile on the Chinese Loess Plateau,which have previously been studied for GDGT records
图3 不同GDGTs指标重建的末次间冰期以来黄土高原不同地点的古温度
(a)邙山 [ 17 , 19 ]; (b) 蓝田 [ 16 , 21 ]; (c) 渭南 [ 22 , 67 ]; (d) 洛川 [ 23 ]; (e) 西峰 [ 20 , 23 ]; (f) 塬堡 [ 18 ]
Fig.3 Paleotemperature changes based on GDGTs in different regions of the Loess Plateau since the Last Interglacial
(a) Mangshan [ 17 , 19 ]; (b) Lantian [ 16 , 21 ]; (c) Weinan [ 22 , 67 ]; (d) Luochuan [ 23 ]; (e) Xifeng [ 20 , 23 ]; (f) Yuanbao [ 18 ]
1 Liu Tungsheng, Ding Zhongli. Chinese loess and the paleomonsoon[J]. Annual Review of Earth and Planetary Science, 1998, 26(1): 111-145.
2 Guo Z T, Ruddiman W F, Hao Qingzhen, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J]. Nature, 2002, 416(6 877): 159-163.
3 Liu Tungsheng. Loess and Environmental[M]. Beijing: Science Press, 1985.
刘东生. 黄土与环境[M]. 北京: 科学出版社, 1985.
4 Sun Y B, Kutzbach J, An Z S, et al. Astronomical and glacial forcing of East Asian summer monsoon variability[J]. Quaternary Science Reviews, 2015, 115: 132-142.
5 Ding Z L, Yu Z W, Rutter N W, et al. Towards an orbital time scale for Chinese loess deposits[J]. Quaternary Science Reviews, 1994, 13(1): 39-70.
6 Zhou L P, Oldfield F, Wintle A G, et al. Partly pedogenic origin of magnetic variations in Chinese loess[J]. Nature, 1990, 346(6 286): 737-739.
7 An Z S, Huang Y S, Liu W G, et al. Multiple expansions of C4 plant biomass in East Asia since 7 Ma coupled with strengthened monsoon circulation[J]. Geology, 2005, 33(9): 705-708.
8 Ning Y F, Liu W G, An Z S, et al. A 130-ka reconstruction of precipitation on the Chinese Loess Plateau from organic carbon isotopes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 270(1): 59-63.
9 Lv H Y, Wu N Q, Yang X D, et al. Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China I: Phytolith-based transfer functions[J]. Quaternary Science Reviews, 2006, 25(9/10): 945-959.
10 Lv H Y, Wu N Q, Yang X D, et al. Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China II: Palaeoenvironmental reconstruction in the Loess Plateau[J]. Quaternary Science Reviews, 2007, 26(5/6): 759-772.
11 Chen J, An Z S, Head J. Variation of Rb/Sr ratios in the loess-paleosol sequences of central China during the last 130,000 years and their implications for monsoon paleoclimatology[J]. Quaternary Research, 1999, 51(3): 215-219.
12 Yang S L, Ding Z L. Color reflectance of Chinese loess and its implications for climate gradient changes during the last two glacial-interglacial cycles[J]. Geophysical Research Letters, 2003, 30(20): 2 058.
13 Schouten S, Hopmans E C, Sinninghe Damsté J S. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review[J]. Organic Geochemistry, 2013, 54: 19-61.
14 Weijers J W H, Schouten S, van Den Donker J C, et al. Environmental controls on bacterial tetraether membrane lipid distribution in soils[J]. Geochimica et Cosmochimica Acta, 2007, 71(3): 703-713.
15 Wang H Y, Liu W G, Zhang C L. Dependence of the cyclization of branched tetraethers on soil moisture in alkaline soils from arid-subhumid China: Implications for palaeorainfall reconstructions on the Chinese Loess Plateau[J]. Biogeosciences, 2014, 11(23): 6 755-6 768.
16 Gao L, Nie J S, Clemens S, et al. The importance of solar insolation on the temperature variations for the past 110kyr on the Chinese Loess Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 317/318: 128-133.
17 Peterse F, Prins M A, Beets C J, et al. Decoupled warming and monsoon precipitation in East Asia over the last deglaciation[J]. Earth and Planetary Science Letters, 2011, 301(1/2): 256-264.
18 Jia G D, Rao Z G, Zhang J, et al. Tetraether biomarker records from a loess-paleosol sequence in the western Chinese Loess Plateau[J]. Frontiers in Microbiology, 2013, 4: 199.
19 Peterse F, Martínez-García A, Zhou Bin, et al. Molecular records of continental air temperature and monsoon precipitation variability in East Asia spanning the past 130,000 years[J]. Quaternary Science Reviews, 2014, 83: 76-82.
20 Zeng F M, Yang H. Temperature changes reconstructed from branched GDGTs on the central Loess Plateau during the past 130-5 ka[J]. Quaternary International, 2019, 503: 3-9.
21 Lu H X, Liu W G, Wang H Y, et al. Variation in 6-methyl branched glycerol dialkyl glycerol tetraethers in Lantian loess-paleosol sequence and effect on paleotemperature reconstruction[J]. Organic Geochemistry, 2016, 100: 10-17.
22 Tang C Y, Yang Huan, Dang X Y, et al. Comparison of paleotemperature reconstructions using microbial tetraether thermometers of the Chinese loess-paleosol sequence for the past 350000 years[J]. Science China Earth Science, 2017, 60: 1 159-1 170.
23 Lu H X, Liu W G, Yang H, et al. 800-kyr land temperature variations modulated by vegetation changes on Chinese Loess Plateau[J]. Nature Communications, 2019, 10(1): 1 958.
24 Zhao H Huang C C, Wang H Y, et al. Mid-late Holocene temperature and precipitation variations in the Guanting Basin, upper reaches of the Yellow River[J]. Quaternary International, 2018, 490: 74-81.
25 Duan Y W, Sun Q, Werne J P, et al. Mid-Holocene moisture maximum revealed by pH changes derived from branched tetraethers in loess deposits of the northeastern Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 520: 138-149.
26 Sun W, Zhao S J, Pei H Y, et al. The coupled evolution of mid- to late Holocene temperature and moisture in the southeast Qaidam Basin[J]. Chemical Geology, 2019, 528: 119-282.
27 Duan Yanwu, Sun Qing, Xie Manman, et al. Holocene temperature changes in arid central Asia revealed by GDGTs of loess-paleosol sequence in Tianshan Mountains[J]. Arid Land Geography, 2018, 41(3): 528-535.
段炎武, 孙青, 谢曼曼, 等. 新疆天山黄土GDGTs重建的全新世温度逐步升高及其可能意义[J]. 干旱区地理, 2018, 41(3): 528-535.
28 Sinninghe Damsté J S, Hopmans E C, Pancost R D, et al. Newly discovered non-isoprenoid glycerol dialkyl glycerol tetraether lipids in sediments[J]. Chemical Communications, 2000, (17): 1 683-1 684.
29 Sinninghe Damsté J S, Schouten S, Hopmans E C, et al. Crenarchaeol: The characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota[J]. Journal of Lipid Research, 2002, 43(10): 1 641-1 651.
30 Li Jingjing, Xie Shucheng. Application of microbial membrane tetraether lipids in lacustrine environments: A review[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(2): 277-285.
李婧婧, 谢树成. 微生物四醚膜脂化合物在湖泊环境中的研究进展[J]. 矿物岩石地球化学通报, 2015, 34(2): 277-285.
31 Powers L A, Johnson T C, Weme J P, et al. Large temperature variability in the southern African tropics since the last glacial maximum[J]. Geophysical Research Letters, 2005, 32(8): L08706. DOI:10.1029/2004GL022014.
doi: 10.1029/2004GL022014    
32 Woltering M, Johnson T C, Werne J P, et al. Late Pleistocene temperature history of Southeast Africa: A TEX86 temperature record from Lake Malaw[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 303(1/4): 93-102.
33 Daniels W, Casta?eda I, Brigham-Grette J. Three million year climate history of the terrestrial Arctic inferred from biomarkers at Lake El’gygytgyn[J]. Geophysical Research Abstracts, 2019, 21: 1.
34 Tian L P, Wang M Y, Zhang X, et al. Synchronous change of temperature and moisture over the past 50 ka in subtropical southwest China as indicated by biomarker records in a crater lake[J]. Quaternary Science Reviews, 2019, 212: 121-134.
35 Weijers J W H, Schefu? E, Schouten S, et al. Coupled thermal and hydrological evolution of tropical Africa over the last deglaciation[J]. Science, 2007, 315(5 819): 1 701-1 704.
36 Jenkyns H C, Schouten-Huibers L, Schouten S, et al. Middle Jurassic-early Cretaceous high-latitude sea-surface temperatures from the southern Ocean[J]. Climate of the Past, 2011, 7(2): 1 339-1 361.
37 Chen Lilei, Li Feng, Liu Jian. Advances in glycerol dialkyl glycerol tetraethers and long-chain alkyldiols in the marine sediments:Implications for paleoclimatic and paleoenvironmental changes[J]. Advances in Earth Science, 2019, 34(8): 855-867.
陈立雷, 李凤, 刘健. 海洋沉积物中GDGTs和长链二醇的古气候—环境指示意义研究进展[J]. 地球科学进展, 2019, 34(8):855-867.
38 Wang Shougang, Wang Rujian, Chen Jianfang, et al. Spatial distribution patterns of GDGTs in the surface sediments from the Bering Sea and Arctic Ocean and their environmental significances[J]. Advances in Earth Science, 2013, 28(2): 282-296.
王寿刚,王汝建, 陈建芳, 等. 白令海与西北冰洋表层沉积物中四醚膜类脂物研究及其生态和环境指示意义[J]. 地球科学进展, 2013, 28(2): 282-296.
39 Yang H, Ding W H, Zhang C L, et al. Occurrence of tetraether lipids in stalagmites: Implications for sources and GDGT-based proxies[J]. Organic Geochemistry, 2011, 42(1): 108-115.
40 Huguet C, Routh J, Fietz S, et al. Temperature and monsoon tango in a tropical stalagmite: Last glacial-interglacial climate dynamics[J]. Scientific Reports, 2018, 8(1): 5 386.
41 Blyth A J, Jex C N, Baker A, et al. Contrasting distributions of Glycerol Dialkyl Glycerol Tetraethers (GDGTs) in speleothems and associated soils[J]. Organic Geochemistry, 2014, 69: 1-10.
42 Weijers J W H, Schouten S, Sluijs A, et al. Warm arctic continents during the Palaeocene-Eocene thermal maximum[J]. Earth Planetary Science Letters, 2007, 261(1/2): 230-238.
43 Schouten S, Eldrett J, Greenwood D R, et al. Onset of long-term cooling of Greenland near the Eocene-Oligocene boundary as revealed by branched tetraether lipids[J]. Geology, 2008, 36(2): 147-150.
44 Keating-Bitonti C R, Ivany L C, Affek H P, et al. Warm, not super-hot, temperatures in the early Eocene subtropics[J]. Geology, 2011, 39(8): 771-774.
45 Kemp D B, Robinson S A, Alistair Crame J, et al. A cool temperate climate on the Antarctic Peninsula through the latest Cretaceous to early Paleogene[J]. Geology, 2014, 42(7): 583-586.
46 Schouten S, Hopmans E C, Schefu? E, et al. Distributional variations in marine crenarchaeotal membrane lipids: A new tool for reconstructing ancient sea water temperatures?[J]. Earth Planetary Science Letters, 2002, 204(1): 265-274.
47 Gr?ther O, Duilio A. Detection of regioisomeric macrocyclic tetraethers in the lipids of methanobacterium thermoautotrophicum and other archaeal organisms[J]. Journal of the Chemical Society Chemical Communications, 1995, 23(4): 405-406.
48 De Rosa M, Gambacorta A, Nicolaus B, et al. Complex lipids of Caldariella acidophila, a thermoacidophilic archaebacterium[J]. Phytochemistry, 1980, 19(5): 821-825.
49 Liu X L, Lipp J S, Birgel D, et al. Predominance of parallel glycerol arrangement in archaeal tetraethers from marine sediments: Structural features revealed from degradation products[J]. Organic Geochemistry, 2018, 115: 12-23.
50 Sinninghe Damsté J S, Rijpstra W I C, Hopmans E C, et al. The enigmatic structure of the crenarchaeol isomer[J]. Organic Geochemistry, 2018, 124: 22-28.
51 Weijers J W H, Schouten S, Hopmans E C, et al. Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits[J]. Environmental Microbiology, 2006, 8(4): 648-657.
52 Zech R, Gao Li, Tarozo R, et al. Branched glycerol dialkyl glycerol tetraethers in Pleistocene loess-paleosol sequences: Three case studies[J]. Organic Geochemistry, 2012, 53: 38-44.
53 De Jonge C, Hopmans E C, Stadnitskaia A, et al. Identification of novel penta- and hexamethylated branched glycerol dialkyl glycerol tetraethers in peat using HPLC-MS2, GC-MS and GC-SMB-MS[J]. Organic Geochemistry, 2013, 54: 78-82.
54 De Jonge C, Hopmans E C, Zell C I, et al. Occurrence and abundance of 6-methyl branched glycerol dialkyl glycerol tetraethers in soils: Implications for palaeoclimate reconstruction[J]. Geochimica et Cosmochimica Acta, 2014, 141: 97-112.
55 Yang H, Lv X X, Ding W H, et al. The 6-methyl branched tetraethers significantly affect the performance of the methylation index (MBT') in soils from an altitudinal transect at Mount Shennongjia[J]. Organic Geochemistry, 2015, 82: 42-53.
56 Woese C R, Kandler O, Wheelis M L. Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya[J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(12): 4 576-4 579.
57 Weijers J W H, Panoto E, Bleijswijk J V, et al. Constraints on the biological source(s) of the orphan branched tetraether membrane lipids[J]. Geomicrobiology Journal, 2009, 26(6): 402-414.
58 Sinninghe Damsté J S, Rijpstra W C, Hopmans E C, et al. 13,16-dimethyl octacosanedioic acid (iso-diabolic acid), a common membrane-spanning lipid of acidobacteria subdivisions 1 and 3[J]. Applied and Environmental Microbiology, 2011, 77(12): 4 147-4 154.
59 Zhang C L, Wang J X, Dodsworth J A, et al. In situ production of branched glycerol dialkyl glycerol tetraethers in a great basin hot spring (USA)[J]. Frontiers in Microbiology, 2013, 4: 181.
60 Sun J J, Zhang C L, Li F Y, et al. Distribution of branched glycerol dialkyl glycerol tetraethers in soils on the Northeastern Qinghai-Tibetan Plateau and possible production by nitrite-reducing bacteria[J]. Science China Earth Science, 2016, 59(9): 1 834-1 846.
61 Peterse F, Meer J, Schouten S, et al. Revised calibration of the MBT-CBT paleotemperature proxy based on branched tetraether membrane lipids in surface soils[J]. Geochimica et Cosmochimica Acta, 2012, 96: 215-229.
62 Ding S, Xu Y P, Wang Y T, et al. Distribution of branched glycerol dialkyl glycerol tetraethers in surface soils of the Qinghai-Tibetan Plateau: Implications of brGDGTs-based proxies in cold and dry regions[J]. Biogeosciences, 2015, 12: 3 141-3 151.
63 De Jonge C, Stadnitskaia A, Hopmans E C, et al. In-situ produced branched glycerol dialkyl glycerol tetraethers in suspended particulate matter from the Yenisei River, Eastern Siberia[J]. Geochimica et Cosmochimica Acta, 2014, 125: 476-491.
64 Zheng F F, Zhang C L, Chen Y F, et al. Branched tetraether lipids in Chinese soils: Evaluating the fidelity of MBT/CBT proxies as paleoenvironmental proxies[J]. Science China Earth Sciences, 2016, 59(7): 1 353-1 367.
65 Xie S C, Pancost R D, Chen L, et al. Microbial lipid records of highly alkaline deposits and enhanced aridity associated with significant uplift of the Tibetan Plateau in the late Miocene[J]. Geology, 40(4): 291-294.
66 Hopmans E C, Weijers J W H, Schefu? E, et al. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids[J]. Earth and Planetary Science Letters, 2004, 224(1): 107-116.
67 Yang H, Pancost R D, Dang X Y, et al. Correlations between microbial tetraether lipids and environmental variables in Chinese soils: Optimizing the paleo-reconstructions in semi-arid and arid regions[J]. Geochimica et Cosmochimica Acta, 2014, 126: 49-69.
68 Wang H Y, Liu W G, Lu H X, et al. Appraisal of branched glycerol dialkyl glycerol tetraether-based indices for North China[J]. Organic Geochemistry, 2016, 98: 118-130.
69 Wang H Y, An Z S, Lu H X, et al. Calibrating bacterial tetraether distributions towards in situ soil temperature and application to a loess-paleosol sequence[J]. Quaternary Science Reviews, 2020, 231: 106172.
70 Zheng Y H, Pancost R D, Naafs B D, et al. Transition from a warm and dry to a cold and wet climate in NE China across the Holocene[J]. Earth and Planetary Science Letters, 2018, 493: 36-46.
71 Thomas E K, Clemens S C, Sun Youbin, et al. Heterodynes dominate precipitation isotopes in the East Asian monsoon region, reflecting interaction of multiple climate factors[J]. Earth and Planetary Science Letters, 2016, 455: 196-206.
72 Sun Huiling. Palaeoenvironment Reconstruction of the Middle to Late Holocene in a High-resolution Sediment Core from Tianchi Lake on Liupan Mountain[D]. Lanzhou: Lanzhou Uinversity, 2011.
孙惠玲. 六盘山天池岩芯记录与中晚全新世气候变化研究[D]. 兰州:兰州大学,2011.
73 Wu D D, Cao J T, Jia G D, et al. Peat brGDGTs-based Holocene temperature history of the Altai Mountains in arid Central Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 538: 109464.
74 Schreuder L T, Beets C J, Prins M A, et al. Late Pleistocene climate evolution in Southeastern Europe recorded by soil bacterial membrane lipids in Serbian loess[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 449: 141-148.
75 Cao J T, Rao Z G, Jia G D, et al. A 15 ka pH record from an alpine lake in north China derived from the cyclization ratio index of aquatic brGDGTs and its paleoclimatic significance[J]. Organic Geochemistry, 2017, 109: 31-46.
76 Chen F H, Wu D, Chen J H, et al. Holocene moisture and East Asian summer monsoon evolution in the northeastern Tibetan Plateau recorded by Lake Qinghai and its environs: A review of conflicting proxies[J]. Quaternary Science Reviews, 2016, 154: 111-129.
77 Cheng B, Chen F H, Zhang J W. Palaeovegetational and palaeoenvironmental changes since the last deglacial in Gonghe Basin, northeast Tibetan Plateau[J]. Journal of Geographical Sciences, 2013, 23(1): 136-146.
78 Li J Y, Dodson J, Yan H, et al. Quantitative precipitation estimates for the northeastern Qinghai-Tibetan Plateau over the last 18,000 years[J]. Journal of Geophysical Research: Atmospheres, 2017, 122: 5 132-5 143.
79 Yang H, Ding W H, Wang J X, et al. Soil pH impact on microbial tetraether lipids and terrestrial input index (BIT) in China[J]. Science China Earth Sciences, 2012, 55(2): 236-245.
80 Dang X Y, Yang H, Naafs B D A, et al. Evidence of moisture control on the methylation of branched glycerol dialkyl glycerol tetraethers in semi-arid and arid soils[J]. Geochimica et Cosmochimica Acta, 2016, 189: 24-36.
81 Wang H Y, Liu W G, Zhang C L, et al. Branched and Isoprenoid Tetraether (BIT) index traces water content along two marsh-soil transects surrounding Lake Qinghai: Implications for paleo-humidity variation[J]. Organic Geochemistry, 2013, 59: 75-81.
82 Dirghangi S S, Pagani M, Hren M T, et al. Distribution of glycerol dialkyl glycerol tetraethers in soils from two environmental transects in the USA[J]. Organic Geochemistry, 2013, 59: 49-60.
83 Tang C Y, Yang H, Pancost R D, et al. Tropical and high latitude forcing of enhanced megadroughts in Northern China during the last four terminations[J]. Earth and Planetary Science Letters, 2017, 479: 98-107.
84 Wang H Y, Liu W G, Lu H X, et al. Potential degradation effect on paleo-moisture proxies based on the relative abundance of archaeal vs. bacterial tetraethers in loess-paleosol sequences on the Chinese Loess Plateau[J]. Quaternary Internation, 2017, 436: 173-180.
85 Peterse F, Schouten S, Vander M J, et al. Distribution of branched tetraether lipids in geothermally heated soils: Implications for the MBT/CBT temperature proxy[J]. Organic Geochemistry, 2009, 40(2): 201-205.
86 Menges J, Huguet C, Alca?iz J M, et al. Influence of water availability in the distributions of branched glycerol dialkyl glycerol tetraether in soils of the Iberian Peninsula[J]. Biogeosciences, 2014, 11(10): 2 571-2 581.
87 Weijers J W H, Bernhardt B, Peterse F, et al. Absence of seasonal patterns in MBT-CBT indices in mid-latitude soils[J]. Geochimica et Cosmochimica Acta, 2011, 75(11): 3 179-3 190.
88 Chen F H, Chen J H, Wang W, et al. Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales[J]. Earth Science Reviews, 2019, 192: 337-354.
89 Li G Q, Chen F H, Xia D S, et al. A Tianshan Mountains loess-paleosol sequence indicates anti-phase climatic variations in arid central Asia and in East Asia[J]. Earth and Planetary Science Letters, 2018, 494: 153-163.
90 Li G Q, Rao Z G, Duan Y W, et al. Paleoenvironmental changes recorded in a luminescence dated loess/paleosol sequence from the Tianshan Mountains, arid central Asia, since the Penultimate Glaciation[J]. Earth and Planetary Science Letters, 2016, 448: 1-12.
[1] 梁承弘, 鹿化煜. 风成沉积物叶蜡氢同位素在揭示东亚季风区干湿变化中的原理及应用[J]. 地球科学进展, 2021, 36(1): 45-57.
[2] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[3] 武雪超, 郝青振, Marković Slobodan B, 付玉, 娜米尔, 宋扬, 郭正堂. 多瑙河黄土与古环境研究进展[J]. 地球科学进展, 2020, 35(4): 363-377.
[4] 王鑫,张金辉,贾佳,王蜜,王强,陈建徽,王飞,李再军,陈发虎. 中亚干旱区第四系黄土和干旱环境研究进展[J]. 地球科学进展, 2019, 34(1): 34-47.
[5] 王宇航, 朱园园, 黄建东, 宋虎跃, 杜勇, 李哲. 海相碳酸盐岩稀土元素在古环境研究中的应用[J]. 地球科学进展, 2018, 33(9): 922-932.
[6] 王兆夺, 黄春长, 周亚利, 庞奖励, 查小春. 关中东部全新世黄土—古土壤序列粒度组分变化特征及古气候意义[J]. 地球科学进展, 2018, 33(3): 293-304.
[7] 付渊赩, 李乐, 陈骏. 颗粒破碎铀同位素年代学在风尘系统中的应用[J]. 地球科学进展, 2018, 33(10): 1034-1047.
[8] 刘江艳, 张昌民, 尹太举, 朱锐, 侯国伟. 涌潮沉积研究现状及进展[J]. 地球科学进展, 2018, 33(1): 66-74.
[9] 王蕾彬, 魏海涛, 贾佳, 李国强, 陈发虎. 亚洲中部干旱区黄土释光测年研究进展及其问题[J]. 地球科学进展, 2018, 33(1): 93-102.
[10] 李兴文, 张鹏, 强小科, 敖红. 三门峡会兴沟剖面黄土—古土壤序列的岩石磁学研究[J]. 地球科学进展, 2017, 32(5): 513-523.
[11] 王瑞, 余克服, 王英辉, 边立曾. 珊瑚礁的成岩作用[J]. 地球科学进展, 2017, 32(3): 221-233.
[12] 彭大雷, 许强, 董秀军, 巨袁臻, 亓星, 陶叶青. 无人机低空摄影测量在黄土滑坡调查评估中的应用[J]. 地球科学进展, 2017, 32(3): 319-330.
[13] 许子娟, 左昕昕, 范百龄, 丁新泉, 张晓东, 李子川, 闫翠香, 宋照亮. 植硅体圈闭碳地球化学研究进展[J]. 地球科学进展, 2017, 32(2): 151-159.
[14] 李娜, 孙军杰, 王谦, 钟秀梅, 冯敏杰, 郭鹏. 黄土地基改性处理技术研究进展评述与展望[J]. 地球科学进展, 2017, 32(2): 209-219.
[15] 张琪琳, 王占礼, 王栋栋, 刘俊娥. 黄土高原草地植被对土壤侵蚀影响研究进展[J]. 地球科学进展, 2017, 32(10): 1093-1101.
阅读次数
全文


摘要