地球科学进展 ›› 2016, Vol. 31 ›› Issue (10): 995 -1000. doi: 10.11867/j.issn.1001-8166.2016.10.0995.

所属专题: “一带一路”绿色发展研究

国家重点研发计划进展    下一篇

全球变暖“停滞”现象辨识与机理研究
林霄沛 1, 许丽晓 1*, *, 李建平 2, 罗德海 3, 刘海龙 4   
  1. 1.中国海洋大学物理海洋教育部重点实验室,青岛海洋科学与技术国家实验室,山东 青岛 266100;
    2.北京师范大学全球变化与地球系统科学研究院,北京 100875;
    3.中国科学院大气物理研究所东亚区域气候—
    环境重点实验室,北京 100029;
    4.上海交通大学海洋研究院,上海 200240
  • 收稿日期:2016-08-01 修回日期:2016-09-08 出版日期:2016-10-20
  • 通讯作者: 许丽晓(1985-),女,山东莱芜人,讲师,主要从事海洋—大气相互作用研究.E-mail: lxu@ouc.edu.cn
  • 基金资助:
    国家重点研发计划项目“全球变暖‘停滞’现象辨识与机理研究”(编号:2016YFA0601800)资助

Research on the Global Warming Hiatus

Lin Xiaopei 1, Xu Lixiao 1, *, Li Jianping 2, Luo Dehai 3, Liu Hailong 4   

  1. 1.Physical Oceanography Laboratory/CIMST, Ocean University of China, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China;
    2.College of Global Change and Earth System Science (GCESS), Beijing Normal University, Beijing 100875, China;
    3.RCE-TEA, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;
    4.Institute of Oceanology, Shanghai Jiao Tong University,Shanghai 200240, China
  • Received:2016-08-01 Revised:2016-09-08 Online:2016-10-20 Published:2016-10-20
  • About author:Lin Xiaopei(1976-), male, Qingdao City, Shandong Province, Professor. Research areas include ocean dynamics.E-mail:linxiaop@ouc.edu.cn*Corresponding author:Xu Lixiao(1985-), female, Laiwu City, Shandong Province, Lecture. Research areas include ocean-atmosphere interactions.E-mail:lxu@ouc.edu.cn
  • Supported by:
    Project supported by the National Key Research and Development Program of China “Research on the global warming hiatus: Identifying the phenomena and revealing the key mechanisms”(No.2016YFA0601800)
观测表明全球温室气体浓度持续快速增加,但21世纪以来全球表面平均温度升高有减缓趋势,呈现变暖“停滞”现象,这对已有的全球变暖认识带来挑战。围绕“变暖‘停滞’机理及其可预测性”这一国际前沿科学问题,国家重点研发计划“全球变暖‘停滞’现象辨识与机理研究”主要研究内容有:①辨识变暖“停滞”的时空特征,阐明外部强迫和内部自然变率的相对贡献;②阐明全球变暖停滞背景下,大气在气候系统能量热量再分配过程中的作用及机理;③阐明全球变暖“停滞”背景下,海洋动力热力过程对能量热量再分配的调制机理;④探讨全球变暖“停滞”现象的可预测性,对其未来变化及重要区域气候影响进行预测预估。以期通过变暖“停滞”研究回答人们所关心的目前变暖停滞现象未来发展及其对我国及周边的“一带一路”核心区和南北极重要区域的影响,为我国未来气候政策的制定提供参考依据,为国家参与全球气候治理及国际气候谈判提供科学支撑。
A global warming “hiatus” has been observed since the beginning of the 21st century despite the increase in heat-trapping greenhouse gases, challenging the current global warming studies. Focusing on the phenomena and mechanisms of the global warming “hiatus”, the National Key Research Program of China launched a project in July, 2016. The main research themes of this project cover: ①Revealing the spatial and temporal variability of the global warming hiatus, and quantifying the contributions of external forcing and internal (natural) variability, respectively; ②Revealing the role of the atmosphere in the global heat and energy redistribution under global warming hiatus; ③Revealing the role of the ocean in the global heat and energy redistribution under global warming hiatus; ④Investigating the predictability of the global warming hiatus. The key scientific issues to be resolved include: ①Identifying characteristics of the global warming hiatus and discerning the roles of decadal, multi-decadal oscillations; ②Revealing the role of ocean-atmosphere dynamical processes in the global redistribution of heat and energy; ③Understanding the predictability of the global warming hiatus. The research aims to predict the future development of the global warming hiatus, and to point out the possible impacts on China and other important areas, including “The Belt and Road” core area and the Polar Regions.

中图分类号: 

[1] Easterling D R, Wehner M F. Is the climate warming or cooling?[J]. Geophysical Research Letters , 2009, 36(8),doi: 10.1029/2009GL037810.
[2] Karl T R, Arguez A, Huang B, et al . Possible artifacts of data biases in the recent global surface warming hiatus[J]. Science , 2015, 348(6 242): 1 469-1 472.
[3] Cowtan K, Way R G. Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends[J]. Quarterly Journal of the Royal Meteorological Society , 2014, 140(683): 1 935-1 944.
[4] Lewandowsky S, Risbey J S, Oreskes N. On the definition and identifiability of the alleged “hiatus” in global warming[J]. Scientific Reports , 2015, 5, doi: 10.1038/srep16784.
[5] Held I M. Climate science: The cause of the pause[J]. Nature , 2013, 501(7 467): 318-319.
[6] Schmidt G A, Shindell D T, Tsigaridis K. Reconciling warming trends[J]. Nature Geoscience , 2014, doi: 10.1038/ngeo2105.
[7] Santer B D, Bonfils C, Painter J F, et al . Volcanic contribution to decadal changes in tropospheric temperature[J]. Nature Geoscience , 2014, 7(3): 185-189.
[8] Trenberth K E, Fasullo J T. An apparent hiatus in global warming?[J]. Earth ’ s Future , 2013, 1(1): 19-32.
[9] Meehl G A, Arblaster J M, Fasullo J T, et al . Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods[J]. Nature Climate Change , 2011, 1(7): 360-364.
[10] Meehl G A, Hu A, Arblaster J M, et al . Externally forced and internally generated decadal climate variability associated with the Interdecadal Pacific Oscillation[J]. Journal of Climate , 2013, 26(18): 7 298-7 310.
[11] Kosaka Y, Xie S P. Recent global-warming hiatus tied to equatorial Pacific surface cooling[J]. Nature , 2013, 501(7 467): 403-407.
[12] Dai A, Fyfe J C, Xie S P, et al . Decadal modulation of global surface temperature by internal climate variability[J]. Nature Climate Change , 2015, 5(6): 555-559.
[13] Li J, Sun C, Jin F F. NAO implicated as a predictor of Northern Hemisphere mean temperature multidecadal variability[J]. Geophysical Research Letters , 2013, 40(20): 5 497-5 502.
[14] Sun C, Li J, Jin F F. A delayed oscillator model for the quasi-periodic multidecadal variability of the NAO[J]. Climate Dynamics , 2015, 45(7/8): 2 083-2 099.
[15] McGregor S, Timmermann A, Stuecker M F, et al . Recent walker circulation strengthening and Pacific cooling amplified by Atlantic warming[J]. Nature Climate Change , 2014, 4(10): 888-892.
[16] Lee S K, Park W, Baringer M O, et al . Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus[J]. Nature Geoscience , 2015, 8(6): 445-449.
[17] Huang R X. Heaving modes in the world oceans[J]. Climate Dynamics , 2015, 45(11/12): 3 563-3 591.
[18] England M H, McGregor S, Spence P, et al . Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus[J]. Nature Climate Change , 2014, 4(3): 222-227.
[19] Drijfhout S S, Blaker A T, Josey S A, et al . Surface warming hiatus caused by increased heat uptake across multiple ocean basins[J]. Geophysical Research Letters , 2014, 41(22): 7 868-7 874.
[20] Chen X, Tung K K. Varying planetary heat sink led to global-warming slowdown and acceleration[J]. Science , 2014, 345(6 199): 897-903.
[21] Long S M, Xie S P, Zheng X T, et al . Fast and slow responses to global warming: Sea surface temperature and precipitation patterns[J]. Journal of Climate , 2014, 27(1): 285-299.
[22] Liu W, Xie S P, Lu J. Tracking ocean heat uptake during the surface warming hiatus[J]. Nature Communications , 2016, 7, doi: 10.1038/ncomms10926.
[23] Screen J A, Simmonds I. The central role of diminishing sea ice in recent Arctic temperature amplification[J]. Nature , 2010, 464(7 293): 1 334-1 337.
[1] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[2] 夏松, 刘鹏, 江志红, 程军. CMIP5CMIP6模式在历史试验下对 AMOPDO的模拟评估[J]. 地球科学进展, 2021, 36(1): 58-68.
[3] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[4] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[5] 王冰笛, 李清泉, 沈新勇, 董李丽, 汪方, 王涛, 梁信忠. 区域气候模式 CWRF对东亚冬季风气候特征的模拟[J]. 地球科学进展, 2020, 35(3): 319-330.
[6] 郝志新,吴茂炜,张学珍,刘洋,郑景云. 过去千年中国年代和百年尺度冷暖阶段的干湿格局变化研究[J]. 地球科学进展, 2020, 35(1): 18-25.
[7] 罗鑫玥,陈明星. 城镇化对气候变化影响的研究进展[J]. 地球科学进展, 2019, 34(9): 984-997.
[8] 陈发虎, 董广辉, 陈建徽, 郜永祺, 黄伟, 王涛, 陈圣乾, 侯居峙. 亚洲中部干旱区气候变化与丝路文明变迁研究:进展与问题[J]. 地球科学进展, 2019, 34(6): 561-572.
[9] 魏瑞江, 王鑫. 气候适宜度国内外研究进展及展望[J]. 地球科学进展, 2019, 34(6): 584-595.
[10] 武丰民,李文铠,李伟. 北极放大效应原因的研究进展[J]. 地球科学进展, 2019, 34(3): 232-242.
[11] 曲建升, 肖仙桃, 曾静静. 国际气候变化科学百年研究态势分析 *[J]. 地球科学进展, 2018, 33(11): 1193-1202.
[12] 黄存瑞, 王琼. 气候变化健康风险评估、早期信号捕捉及应对策略研究[J]. 地球科学进展, 2018, 33(11): 1105-1111.
[13] 潘留杰, 张宏芳. NEX-BCC模式对秦岭及周边地区气候变化的模拟及预估[J]. 地球科学进展, 2018, 33(9): 933-944.
[14] 李宁, 刘丽, 张正涛, 冯介玲, 陈曦, 白扣. 气候变化经济影响研究热点的足迹可视化:整合被引文献和突现词[J]. 地球科学进展, 2018, 33(8): 865-873.
[15] 念达, 邓琪敏, 付遵涛. 相对湿度及其变化的年循环研究进展[J]. 地球科学进展, 2018, 33(7): 762-774.
阅读次数
全文


摘要