Please wait a minute...
img img
高级检索
地球科学进展  2015, Vol. 30 Issue (2): 237-246    DOI: 10.11867/j.issn.1001-8166.2015.02.0237
综述与评述     
现代冰川体积变化研究方法综述
吴珊珊, 姚治君*, 姜丽光, 刘兆飞
中国科学院地理科学与资源研究所,北京100101
Method Review of Modern Glacier Volume Change
Wu Shanshan, Yao Zhijun, Jiang Liguang, Liu Zhaofei
Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
 全文: PDF(1321 KB)   HTML
摘要:

冰川作为气候变化的指示器,在气候变暖的趋势下呈加速退缩的趋势。冰川消融加速对海平面上升、区域水循环和水资源可获取性均有重要影响。冰川体积作为冰川研究的一项重要内容,越来越被研究者关注。围绕极地冰盖、山地冰川体积研究概况,较系统地总结分析研究冰川体积变化的方法,主要包括传统测量方法、统计公式法、冰川地形测量法和遥感监测法,现代冰川体积变化的研究也由传统的实地测量、统计公式法等向遥感监测研究发展,并分析各方法在主要冰川类型中的应用情况。借助遥感手段监测冰川动态变化可有效解决高寒山区资料受限的问题,成为冰川学发展的重要趋势。

关键词: 冰川遥感监测体积变化    
Abstract:

Glaciers, which are sensitive indicators of climate warming, are generally thinning and retreating at an accelerated rate. Glacier melting has wide-ranging consequences such as sea-level rise, regional water cycle, and water availability. Studies of ice volume change, which is a significant part of glacier studies, are increasingly concerned by more researchers. In this article,volume changes of ice caps and mountain glaciers were discussed. Based on this, study methods of glacier volume or ice thickness change were highlighted. In general, there are four methods of investigating glacier volume change. It has improved from traditional ground-based techniques, empirical equation of glacier area and volume, glacier topographic survey to remote sensing monitoring. Due to its novel, rapid and relatively inexpensive techniques, glacier monitoring using remote sensing technique could effectively solve the limited data of remote location in alpine regions. Remote sensing, GIS and GPS technologies will continue to play a significant role in the estimation of volume or ice thickness of mountain glaciers and ice caps.

Key words: Glacier    Remote sensing.    Glacier volume
出版日期: 2015-02-20
:  P343.6  
基金资助:

中国科学院战略性先导科技专项“地表过程关键要素对全球变暖的敏感性及其环境影响”(编号:XDB03030400); 国家自然科学基金项目“长江源头沱沱河流域径流形成机制研究”(编号:41371058)资助

通讯作者: 通讯作者:姚治君(1959-),男,辽宁沈阳人,研究员,主要从事水文、水资源研究.      E-mail: yaozj@igsnrr.ac.cn
作者简介: 作者简介:吴珊珊(1984-),女,山东临沂人,博士研究生,主要从事水文、水资源研究. E-mail: wuss.09b@igsnrr.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘兆飞
姜丽光
吴珊珊
姚治君

引用本文:

吴珊珊, 姚治君, 姜丽光, 刘兆飞. 现代冰川体积变化研究方法综述[J]. 地球科学进展, 2015, 30(2): 237-246.

Wu Shanshan, Yao Zhijun, Jiang Liguang, Liu Zhaofei. Method Review of Modern Glacier Volume Change. Advances in Earth Science, 2015, 30(2): 237-246.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2015.02.0237        http://www.adearth.ac.cn/CN/Y2015/V30/I2/237

[1] Paul F, Kääb A, Maisch M, et al. Rapid disintegration of Alpine glaciers observed with satellite data[J]. Geophysical Research Letters, 2004, 31: L21402,doi:10.1029/2004GL020816.
[2] Stahl K, Moore R. Influence of watershed glacier coverage on summer streamflow in British Columbia, Canada[J]. Water Resources Research, 2006, 42(6): W06201, doi:10.10.1029/2006WR005022.
[3] Yao Tandong, Liu Shiyin, Pu Jianchen, et al. Recent glacier retreat in central Asia and its impact on water resources in northwestern China[J]. Science in China(Series D), 2004, 4(6): 535-543.[姚檀栋,刘时银,蒲健辰,等. 高亚洲冰川的近期退缩及其对西北水资源的影响[J]. 中国科学: D辑, 2004, 4(6): 535-543.]
[4] Haeberli W, Beniston M. Climate change and its impacts on glaciers and permafrost in the Alps[J]. Ambio, 1998, 27: 258-265.
[5] Surazakov A, Aizen V. Estimating volume change of mountain glaciers using SRTM and map-based topographic data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44: 2 991-2 995.
[6] Yao T, Thompson L, Yang W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9): 663-667.
[7] IPCC. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2014.
[8] Barnett T, Adam J, Lettenmaier D. Potential impacts of a warming climate on water availability in snow-dominated regions[J]. Nature, 2005, 438(7 066): 303-309.
[9] Anderson B, Lawson W, Owens I. Response of Franz Josef Glacier Ka Roimata o Hine Hukatere to climate change[J]. Global and Planetary Change, 2008, 63(1): 23-30.
[10] Ding Y, Liu S, Li J, et al. The retreat of glaciers in response to recent climate warming in western China[J]. Annals of Glaciology, 2006, 43:97-105.
[11] Bolch T, Pieczonka T, Benn D. Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery[J]. The Cryosphere, 2011, 5: 349-358.
[12] Xie Z, Shangguan D H, Zhang S, et al. Index for hazard of glacier lake outburst flood of Lake Merzbacher by satellite-based monitoring of lake area and ice cover[J]. Global and Planetary Change, 2013, 107: 229-237.
[13] Gao H, He X, Ye B, et al. Modeling the runoff and glacier mass balance in a small watershed on the Central Tibetan Plateau, China, from 1955 to 2008[J]. Hydrological Processes, 2012, 26: 1 593-1 603.
[14] Zhang S, Ye B, Liu S, et al. A modified monthly degree-day model for evaluating glacier runoff changes in China. Part I: model development[J]. Hydrological Processes, 2012, 26: 1 686-1 696.
[15] Radic′ v, Hock R. Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise[J]. Nature Geoscience, 2011, 4: 91-94.
[16] Jacob T, Wahr J, Pfeffer W, et al. Recent contributions of glaciers and ice caps to sea level rise[J]. Nature, 2012, 482: 514-518.
[17] Bamber J. Climate change: Shrinking glaciers under scrutiny[J]. Nature, 2012, 482(7 386): 482-483.
[18] Moholdt G, Nuth C, Hagen J O, et al. Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry[J]. Remote Sensing of Environment, 2010, 114(11): 2 756-2 767.
[19] Wang Zongtai, Su Hongchao. Glaciers in the world and China: Distribution and their significance as water resources[J]. Journal of Glaciology and Geocryology, 2003, 25(5): 498-503.[王宗太,苏宏超. 世界和中国的冰川分布及其水资源意义[J]. 冰川冻土, 2003, 25(5): 498-503.]
[20] Wu Tao, Kang Jianchen, Wang Fang, et al. The new progresses on global sea level change[J]. Advances in Earth Science, 2006,21(7):731-737.[吴涛,康建成,王芳,等.全球海平面变化研究新进展[J].地球科学进展,2006,21(7):731-737.]
[21] Wen Jiahong, Sun Bo, Li Yuansheng, et al. Progress and prospect in mass balance studies of Antarctic ice sheet[J]. Journal of Ploar Research, 2004, 16(2): 114-126.[温家洪,孙波,李院生,等. 南极冰盖的物质平衡研究:进展与展望[J]. 极地研究, 2004, 16(2): 114-126.]
[22] Tang Xueyuan, Sun Bo, Li Yansheng, et al. Some recent progress of Antarctic ice sheet research[J]. Advances in Earth Science, 2009, 24(11): 1 210-1 218.[唐学远,孙波,李院生,等.南极冰盖研究最新进展[J]. 地球科学进展, 2009, 24(11): 1 210-1 218.]
[23] Velicogna I, Wahr J. Greenland mass balance from GRACE[J]. Geophysical Research Letters, 2005, 32: L18505,doi:1029/2005GL023955.
[24] Chen J, Tapley B, Wilson C. Alaskan mountain glacial melting observed by satellite gravimetry[J]. Earth and Planetary Science Letters,2006, 248(1/2): 368-378.
[25] Zwally H, Schutz B, Abdalati W, et al. ICESat’s laser measurements of polar ice, atmosphere, ocean, and land[J]. Journal of Geodynamics, 2002, 34(3): 405-445.
[26] Bamber J, Bindschadler R. An improved elevation dataset for climate and ice-sheet modelling: Validation with satellite imagery[J]. Annals of Glaciology, 1997, 25: 439-444.
[27] Jezek K. Glaciological properties of the Antarctic ice sheet from RADARSAT-1 synthetic aperture radar imagery[J]. Annals of Glaciology, 1999, 29(1): 286-290.
[28] Liu H, Jezek K, Zhao Z. Radarsat Antarctic Mapping Project Digital Elevation Model Version 2[Z]. Boulder, USA: National Snow and Ice Data Center, 2001.
[29] Lythe M, Vaughan D. BEDMAP: A new ice thickness and subglacial topographic model of Antarctica[J]. Journal of Geophysical Research, 2001, 106(B6): 11 335-11 351.
[30] Li Jiancheng, Fan Chunbo, Chu Yonghai, et al. Precision time transfer methods based on geodetic time and frequency transfer receivers[J]. Geomatics and Information Science of Wuhan University, 2008, 33(3): 227-228.[李建成,范春波,褚永海,等. ICESat卫星确定南极冰盖高程模型研究[J]. 武汉大学学报:信息科学版, 2008, 33(3): 227-228.]
[31] Huang Lei, Li Zhen, Zhou Jianmin, et al.Glacier change monitoring using SAR: An overview[J].Advances in Earth Science, 2014, 29(9): 985-994.[黄磊,李震,周建民,等.SAR监测冰川变化研究进展[J].地球科学进展, 2014, 29(9): 985-994.]
[32] Thomas R, Akins T, Csatho B, et al. Mass balance of the Greenland ice sheet at high elevations[J]. Science, 2000, 289: 426-428.
[33] Zwally H, Abdalati W, Herring T, et al. Surface melt-induced acceleration of Greenland ice-sheet flow[J]. Science, 2002, 297: 218-222.
[34] Rignot E, Thomas R. Mass balance of polar ice sheets[J]. Science, 2002, 297: 1 502-1 506.
[35] Davis C, Li Y, McConnell J, et al. Snowfall driven growth in east Antarctic ice sheet mitigates recent sea-level rise[J]. Science, 2005, 308: 1 898-1 901.
[36] Huang Hailan, Wang Zhengtao, Jin Taoyong, et al. Determination of polar ice sheet height change from ICESat altimetry data[J]. Geomatics and Information Science of Wuhan Uninversity, 2012, 37(10): 1 222-1 251.[黄海兰,王正涛,金涛勇,等.利用ICESat激光测高数据确定极地冰盖高程变化[J].武汉大学学报:自然科学版, 2012, 37(10): 1 222-1 251.]
[37] Chen J, Wilson C, Blankenship D, et al. Accelerated Antarctic ice loss from satellite gravity measurements[J]. Nature Geoscience, 2009, 2(12): 859-862.
[38] Liu Shiyin, Ding Yongjian, Ye Baisheng, et al. Regional characteristics of glacier mass balance variations in high Asia[J]. Journal of Glaciology and Geocryology, 2000, 22(2): 98-104.[刘时银,丁永建,叶佰生,等. 高亚洲地区冰川物质平衡变化特征研究[J]. 冰川冻土, 2000, 22(2): 98-104.]
[39] Racoviteanu A, Manley W, Arnaud Y, et al. Evaluating digital elevation models for glaciologic applications: An example from Nevado Coropuna, Peruvian Andes[J]. Global and Planetary Change, 2007, 59: 110-125.
[40] Rivera A, Benham T, Casassa G, et al. Ice elevation and areal changes of glaciers from the Northern Patagonia icefield, Chile[J]. Global and Planetary Change, 2007, 59(1): 126-137.
[41] Wang Y, Hou S, Hong S, et al. Glacier extent and volume change (1966-2000) on the Su-lo Mountain in Northeastern Tibetan Plateau, China[J]. Journal of Mountain Science, 2008, 5: 299-309.
[42] Wang Yiting, Chen Xiuwan, Bo Yancheng, et al. Monitoring glacier volume change based on multi source DEM and multi temporal remote sensing images[J]. Journal of Glaciology and Geocryology, 2010, 32(1): 127-132.[王祎婷,陈秀万, 柏延臣, 等. 多源DEM和多时相遥感影像监测冰川体积变化——以青藏高原那木纳尼峰地区为例[J]. 冰川冻土, 2010, 32(1): 127-132.]
[43] Pandey A, Ghosh S, Nathawat M, et al. Area change and thickness variation over pensilungpa glacier (J&K) using remote sensing[J]. Journal of the Indian Society of Remote Sensing, 2012, 40(2): 245-255.
[44] Ma Linglong, Tian Lide, Yang Wei, et al. Measuring the depth of Guren Hekou Glacier in the south of the Tibetan Plateau using GPR and estimating its volume based on the outcomes[J]. Journal of Glaciology and Geocryology, 2008, 30(5): 784-788.[马凌龙,田立德,杨威,等.青藏高原南部羊八井古仁河口冰川GPR测厚及冰川体积估算[J]. 冰川冻土, 2008, 30(5): 784-788.]
[45] Ma L, Tian L, Pu J, et al. Recent area and ice volume change of Kangwure Glacier in the middle of Himalayas[J]. Chinese Science Bulletin,2010, 55(20): 2 089-2 096.
[46] Cao B, Pan B T, Wang J, et al. Changes in the glacier extent and surface elevation along the Ningchan and Shuiguan River source, eastern Qilian Mountains, China[J]. Quaternary Research, 2014, 81(3): 531-537.
[47] Gärtner-Roer I, Naegeli K, Huss M, et al. A database of worldwide glacier thickness observations[J]. Global and Planetary Change, 2014, 122: 330-344.
[48] Huss M, Farinotti D. Distributed ice thickness and volume of all glaciers around the globe[J]. Journal of Geophysical Research: Earth Surface(2003-2012), 2012, 117: F04010,doi:1029/2012JF002523.
[49] Zong Jibiao, Ye Qinghua, Tian Lide. Recent Naimona’Nyi Glacier surface elevation changes on the Tibetan Plateau based on ICESat/GLAS, SRTM DEM and GPS measurements[J]. Chinese Science Bullitin, 2013, 58:2 108-2 118.[宗继彪,叶庆华,田立德.基于ICESat/GLAS, SRTM DEM和GPS观测青藏高原纳木那尼冰面高程变化(2000—2010年)[J].科学通报,2014,59(21):2 108-2 118.]
[50] He Chunyang, Ding Yongjian, Li Xin. A visualized computation method for glacier variation[J]. Journal of Glaciology and Geocryology, 1999, 21(2): 170-174.[何春阳,丁永建,李新. 冰川变化可视化计算方法研究[J]. 冰川冻土,1999, 21(2): 170-174.]
[51] Grinsted A. An estimate of global glacier volume[J]. The Cryosphere, 2013, 7: 141-151.
[52] Wen Jiahong, Kang Jiancheng, Sun Bo. Recent progress in the study on Antarctic glaciology and global change[J]. Chinese Journal of Ploar Research, 1997, 9(3): 223-237.[温家洪, 康建成, 孙波. 南极冰川学与全球变化研究新进展[J]. 极地研究, 1997, 9(3): 223-237.]
[53] Yang Daqing. On the mass balance of 50 mountain glaciers in the northern hemisphere[J]. Advances in Water Science, 1992, 3(3): 162-165.[杨大庆. 北半球50条山地冰川近期的物质平衡状况[J]. 水科学进展, 1992, 3(3): 162-165.]
[54] Liu Shiyin, Ding Yongjian, Li Jing, et al. Glaciers in response to recent climate warming in western China[J].Quaternary Sciences, 2006, 26(5): 763-771.[刘时银,丁永建,李晶,等. 中国西部冰川对近期气候变暖的响应[J]. 第四纪研究, 2006, 26(5): 763-771.]
[55] Grinsted A. An estimate of global glacier volume[J]. The Cryosphere, 2013, 7(1): 141-151.
[56] Erasov N. Method to determine the volume of mountain glaciers[J].Materialy Glyatsiologicheskikh Issledovanii: Khronika, Obsuzhdeniya, 1968, 14: 307-308.
[57] Macheret Y, Zhuravlev A. Radio echo-sounding of Svalbard Glaciers[J]. Journal of Glaciology, 1982, 28: 295-314.
[58] Chizhov O, Kotlyakov V. Studies of the Antarctic and present-day concepts of global glaciations[J]. Annals of Glaciology, 1983, 3: 50-53.
[59] Chen J, Ohmura A. Estimation of Alpine glacier water resources and their change since the 1870s[J]. International Association of Hydrological Sciences Publications, 1990, 193: 127-135.
[60] Bahr D B. Global distributions of glacier properties: A stochastic scaling paradigm[J]. Water Resources Research, 1997, 33(7): 1 669-1 679.
[61] Liu Shiyin, Shen Yongping, Sun Wenxin, et al. Glacier variation since the maximum of the little ice age in the western Qinlian Mountains, northwestern China[J].Journal of Glaciology and Geocryology, 2002, 24(3): 227-233.[刘时银,沈永平,孙文新,等. 祁连山西段小冰期以来的冰川变化研究[J]. 冰川冻土, 2002, 24(3): 227-233.]
[62] Radic V, Hock R. Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data[J]. Journal of Geophysical Research: Earth Surface(2003-2012), 2010, 115(F1):F01010,doi:10.1029/2009JF001373.
[63] Pfeffer W, Arendt A, Bliss A, et al. The randolph glacier inventory: A globally complete inventory of glaciers[J]. Journal of Glaciology, 2014, 60(221): 537-552.
[64] Müller F, Caflisch T, Müller G. Firn und Eis der Schweizer Alpen: Gletscherinventar Ergaenzungsban-fotoliste[M].ETH, Geographisches Institut, 1976.
[65] Wang Zongtai. Glacier Inventory of China—Qilian Mountains[M]. Lanzhou: Lanzhou Institute of Glacial Permafrost,Chinese Academy of Sciences, 1981.[王宗太. 中国冰川目录——祁连山区[M]. 兰州:中国科学院兰州冰川冻土研究所, 1981.]
[66] Michel R, Rignot E. Flow of Moreno Glaciar, Argentina, from repeat-pass shuttle imaging radar images: Comparison of the phase correlation method with radar interferometry[J]. Journal of Glaciology, 1999,45(149):93-100.
[67] Krabill W, Abdalati W, Frederick E, et al. Greenland ice sheet: High-elevation balance and peripheral thinning[J].Science, 2000, 289(5 478): 428-430.
[68] Zhang S, Dongchen E D, Wang Z, et al. Surface topography around the summit of Dome A, Antarctica, from real-time kinematic GPS[J]. Journal of Glaciology, 2007, 53(180):159-160.
[69] Wang Puyu, Li Zhongqin, Li Huilin. Ice volume changes and their characteristics for representative glacier against the background of climatic warming—A case study of Urumqi Glacier No.1, Tianshan, China[J]. Journal of Natural Resources, 2011, 26(7): 1 190-1 198.[王璞玉,李忠勤,李慧林.气候变暖背景下典型冰川储量变化及其特征——以天山乌鲁木齐河源1号冰川为例[J]. 自然资源学报, 2011, 26(7): 1 190-1 198.]
[70] Ai Songtao, Wang Zemin, E’ Dongchen, et al. Topographic survey on the surface of glacier Austre Lovénbreen and Pedersenbreen in Svalbard based on GPS method[J]. Chinese Journal of Polar Research, 2012, 24(1): 54-59.[艾松涛, 王泽民, 鄂栋臣,等. 基于GPS的北极冰川表面地形测量与制图[J]. 极地研究, 2012, 24(1): 54-59.]
[71] Fischer A.Calculation of glacier volume from sparse ice-thickness data applied to Schaufelferner, Austria[J]. Journal of Glaciology, 2009, 55(191): 453-460.
[72] Wang Puyu, Li Zhongqin, Cao Min, et al. Ice surface-elevation changes of Glacier No.4 of Sigong River in Bogda, Tianshan Mountains, during the last 50 years[J]. Arid Land Geography, 2011, 34(3): 465-470.[王璞玉,李忠勤,曹敏,等. 近50a来天山博格达峰地区四工河4号冰川表面高程变化特征[J],干旱区地理, 2011, 34(3):465-470.]
[73] Raup B, Kääb A, Kargel J, et al. Remote sensing and GIS technology in the Global Land Ice Measurements from Space (GLIMS) Project[J]. Computers & Geosciences, 2007, 33(1): 104-125.
[74] Berthier E, Arnaud Y, Baratoux D, et al. Recent rapid thinning of the "Mer De Glace" glacier derived from satellite optical images[J]. Geophysical Research Letters, 2004, 31(17):L17401,doi:10.1029/2004GL020706.
[75] Kääb A. Glacier volume changes using ASTER optical stereo. A test study in Eastern Svalbard[C]//IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2007: 3 994-3 996.
[76] Berthier E, Toutin T. SPOT 5-HRS digital elevation models and the monitoring of glacier elevation changes in North-West Canada and South-East Alaska[J]. Remote Sensing of Environment, 2008, 112: 2 443-2 454.
[77] Moholdt G, Nuth C, Hagen J O, et al. Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry[J]. Remote Sensing of Environment, 2010, 114(11): 2 756-2 767.
[78] Foy N, Copland L, Zdanowicz C, et al. Recent volume and area changes of Kaskawulsh Glacier, Yukon, Canada[J]. Journal of Glaciology, 2011, 57(203): 515-525.
[79] Khalsa S, Dyurgerov M, Khromova T, et al. Space based mapping of glacier changes using ASTER and GIS tools[J]. IEEE Transactionson Geosciences and Remote Sensing, 2004, 42(10): 2 177-2 183.
[80] Berthier E, Arnaud Y, Kumar R, et al. Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India)[J]. Remote Sensing of Environment, 2007, 108: 327-338.
[81] Woodward J, Murray T, Roger A, et al. Glacier surge mechanisms inferred from ground-penetrating radar: Kongsvgen, Svalbard[J]. Journal of Glaciology, 2003, 49 (167): 473-480.
[82] Siegert M, Fujita S. Internal ice-sheet radar layer profiles and their relation to reflection mechanisms between Dome C and the Transantarctic Mountains[J]. Journal of Glaciology, 2001, 47(157): 205-212.
[83] Jean F P, Jon Ove Hagen, Melvold K, et al. A mean net accumulation pattern derived from radioactive layers and radar sounding on Austfonna, Nordaustlandet Svalbard[J]. Journal of Glaciology, 2001, 47(159): 555-566.
[84] He Maobing, Sun Bo, Yang Yaxin, et al. Ice thickness determination and analysis of No.1 glacier at the source of Urumchi River, Tianshan by ground penetrating radar[J]. Journal of East China Institute of Technology, 2004, 27(3): 235-339.[何茂兵, 孙波, 杨亚新, 等. 天山乌鲁木齐河源1号冰川探地雷达测厚及其数据分析[J]. 东华理工学院学报, 2004, 27(3): 235-339.]
[85] Sun Bo, He Maobing, Zhang Peng, et al. Determination of ice thickness, subice topography and ice volume at glacier No.1 in the Tianshan, China, by ground penetrating radar[J].Journal of Ploar Research, 2003, 15(1): 35-44.[孙波, 何茂兵, 张鹏, 等. 天山1号冰川厚度和冰下地形探测与冰储量分析[J]. 极地研究, 2003, 15(1): 35-44.]
[86] Casassa G, Rivera A, Acuna C, et al. Elevation change and ice flow at horseshoe Valley, Patriothills, West Antarctica[J]. Annals of Glaciology, 2004, 39: 20-28.
[87] Andres R, Zamora R, Camilo R, et al. Glaciological investigations on Union Glacier, Ellsworth Mountains, West Antarctica[J]. Annals of Glaciology, 2010, 51(55): 91-96.
[88] Shangguan D, Liu S, Ding Y, et al. Thinning and retreat of Xiao Dongkemadi glacier, Tibetan Plateau, since 1993[J]. Journal of Glaciology, 2008, 54(188): 949-951.
[89] Li J, Liu S, Shangguan D, et al. Identification of ice elevation change of the Shuiguan River No.4 Glacier in the Qilian Mountains, China[J]. Journal of Mountain Science, 2010, 7(4): 375-379.
[90] Shangguan D, Liu S, Ding Y, et al. Changes in the elevation and extent of two glaciers along the Yanglonghe River, Qilian Shan, China[J]. Journal of Glaciology, 2010, 56(196): 309-317.
[91] Ding Yongjian, Zhou Chenghu, Shao Ming’an, et al. Studies of earth surface processes: Progress and prospect [J]. Advances in Earth Science, 2013, 28(4): 407-419.[丁永建,周成虎, 邵明安,等. 地表过程研究进展与趋势[J]. 地球科学进展, 2013, 28(4): 407-419.]
[92] Ma Yaoming, Hu Zeyong, Tian Lide, et al. Study progresses of the Tibet Plateau climate system change and mechanism of its impact on East Asia[J]. Advances in Earth Science, 2014, 29(2): 207-215.[马耀明, 胡泽勇, 田立德, 等. 青藏高原气候系统变化及其对东亚区域的影响与机制研究进展[J]. 地球科学进展, 2014, 29 (2): 207-215.]

[1] 孙学军, 康世昌, 张强弓, 丛志远. 山地冰川消融过程中汞的行为及环境效应综述[J]. 地球科学进展, 2017, 32(6): 589-598.
[2] 王聪强, 杨太保, 许艾文, 冀琴, MihretabG.Ghebrezgabher. 近25年唐古拉山西段冰川变化遥感监测[J]. 地球科学进展, 2017, 32(1): 101-109.
[3] 刘铸, 李忠勤. 近期冰川表面径流系数变化的影响因素----以天山乌鲁木齐河源1号冰川为例[J]. 地球科学进展, 2016, 31(1): 103-112.
[4] 黄磊, 李震, 周建民, 田帮森. SAR监测冰川变化研究进展[J]. 地球科学进展, 2014, 29(9): 985-994.
[5] 游超, 姚檀栋, 邬光剑. 雪冰中生物质燃烧记录研究进展[J]. 地球科学进展, 2014, 29(6): 662-673.
[6] 辛惠娟, 何元庆, 张涛, 牛贺文, 杜建括. 青藏高原东南缘丽江玉龙雪山气候变化特征及其对冰川变化的影响[J]. 地球科学进展, 2013, 28(11): 1257-1268.
[7] 刘 力,井哲帆,杜建括. 玉龙雪山白水1号冰川运动速度测量与研究[J]. 地球科学进展, 2012, 27(9): 987-992.
[8] 刘巧, 刘时银. 冰川冰内及冰下水系研究综述[J]. 地球科学进展, 2012, 27(6): 660-669.
[9] 蒋宗立,丁永建,刘时银,林 剑,王 欣,龙四春,魏俊锋. 基于SAR的表碛覆盖型冰川边界定位研究[J]. 地球科学进展, 2012, 27(11): 1245-1251.
[10] 王圣杰, 张明军, 李忠勤, 王飞腾, 张晓宇, 李亚举. 天山乌鲁木齐河源1号冰川雪层中NO-3的演化过程[J]. 地球科学进展, 2011, 26(8): 897-904.
[11] 武震,张世强,刘时银,杜文涛. 祁连山老虎沟12号冰川冰内结构特征分析[J]. 地球科学进展, 2011, 26(6): 631-641.
[12] 卿文武,陈仁升,刘时银,韩海东,王建. 两类度日模型在天山科其喀尔巴西冰川消融估算中的应用[J]. 地球科学进展, 2011, 26(4): 409-416.
[13] 孙维君,秦翔,徐跃通,吴秀平,刘宇硕,任贾文. 祁连山老虎沟12号冰川辐射各分量年变化特征[J]. 地球科学进展, 2011, 26(3): 347-354.
[14] 康世昌, 黄杰,张强弓. 雪冰中汞的研究进展[J]. 地球科学进展, 2010, 25(8): 783-793.
[15] 胡光印,董治宝,魏振海,逯军峰,颜长珍. 近30a来若尔盖盆地沙漠化时空演变过程及成因分析[J]. 地球科学进展, 2009, 24(8): 908-916.