Please wait a minute...
img img
高级检索
地球科学进展  2004, Vol. 19 Issue (6): 931-938    DOI: 10.11867/j.issn.1001-8166.2004.06.0931
研究论文     
现代海底热液活动区的分布与构造环境分析
栾锡武
中国科学院海洋研究所,山东 青岛 266071
DISTRIBUTION AND TECTONIC ENVIRONMENTS OF THE HYDROTHERMAL FIELDS
LUAN Xi-wu
Institute of Oceanology,Chinese Academy of Sciences,Qingdao 266071
 全文: PDF(147 KB)  
摘要:

对全球490多个热液活动区的三维空间分布和构造背景进行了研究,对发育热液活动的构造环境进行了分类,并对各种构造环境发育热液活动的频度进行了统计分析。根据已有的统计数据指出了现代海底热液活动的三维空间分布规律,并对此进行了理论分析。指出现代海底热液活动区主要沿大洋中脊、弧后盆地和板内火山分布,并主要限于40°N和40°S中、低纬度带之间,水深集中在 1300~3700 m之间。出现热液活动概率最高的水深为 2600 m,其次为 1700 m、1900 m、 2200 m、3000 m和 3700 m,平均水深为 2532 m。扩张轴的中轴谷、海底火山口及不发育中轴谷的扩张脊是发育热液活动的主要构造背景。并提出,现代海底热液活动总是出现在构造活动的部位,但并不是构造活跃的部位就发育热液活动。热液活动的发育和构造并不直接相关但却和岩浆发育密切相关。热液活动的发育在位置上受控于岩浆活动,在时间上,它发生在岩浆活动结束后,是强烈的热膨胀、热冷缩后的释热形式。

关键词: 现代海底热液活动分布构造环境岩浆活动    
Abstract:

Up to now, around 490 hydrothermal fields have been reported on the world ocean floor since 1965. Data of the water depth of each of the reported hydrothermal activity fields   is collected The tectonic settings and surface distribution  of the reported hydrothermal activity fields are analyzed in this paper.
 The paper points out that almost all the hydrothermal activity fields distribute within a lower latitude belt between 40°N and 40°S and along oceanic ridges or back arc basins or intra plate volcanoes roughly striking in a north-south direction which are separated from each other by 60 degree along longitude. The water depth of the hydrothermal activity fields varies from several meters to more than 5 000 meters, but mainly between 1 300~3 700 m with average water depth of 2 532 m. Statistic study shows that most of the hydrothermal fields occur at water depth around 2 600 m,and some others occur at 1 700 m、1 900 m、2 200 m and 3 000 m. Hydrothermal activity occurs within 6 kinds of tectonic settings like axial valley on the spreading ridge, seafloor volcanic crater, spreading ridge without axial valley, continental rifting basin, triple junction ridge and sediment covered back arc basin. The first two tectonic settings are the most favorite tectonic environment to develop hydrothermal activity, and more than half of the total hydrothermal activity fields occur in the axial valley on the spreading ridge. The paper also points out that the hydrothermal activity mainly occurs in the area of active tectonic zone, but the active tectonic zone is not necessarily always the place where hy drothermal field occurred, i.e. the  hydrothermal activity is not correlated directly with the tectonic activity, but the magma activityis. The development of the hydrothermal activity is controlled by and occurs after the magma activity,and it is the form of heat releasing of the magma activity

Key words: Hydrothermal activity    Distribution    Tectonic Setting    Magma activity.
收稿日期: 2003-10-16 出版日期: 2004-12-01
:  P736  
基金资助:

中国大洋协会“十五”计划项目“热液柱与南极底流对富钴结壳成因的控制作用“(编号:DY105-01-6)资助

通讯作者: 栾锡武(1966-),男,山东青岛人,研究员,从事海洋地质地球物理研究.     E-mail: E-mail: xluan@ms.qdio.ac.cn
作者简介: 栾锡武(1966-),男,山东青岛人,研究员,从事海洋地质地球物理研究.E-mail: xluan@ms.qdio.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
栾锡武

引用本文:

栾锡武. 现代海底热液活动区的分布与构造环境分析[J]. 地球科学进展, 2004, 19(6): 931-938.

LUAN Xi-wu. DISTRIBUTION AND TECTONIC ENVIRONMENTS OF THE HYDROTHERMAL FIELDS. Advances in Earth Science, 2004, 19(6): 931-938.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2004.06.0931        http://www.adearth.ac.cn/CN/Y2004/V19/I6/931

[1]Degens E T,Ross D A. Hot Brines and Recent Heavy Metal Deposits in the Red Sea[M]. New York:Springer,1969.
[2]Macdonald K C,Becker K,Spiess F N,et al. Hydrothermal heat flux of the black smoker vents on the East Pacific Rise[J].Earth and Planetary Science Letters, 1980,48:1-7.
[3]Lonsdale P.Structural geomorphology of a fast-spreading rise crest: The East Pacific Rise near 3 25'S[J].Marine Geophysics Research, 1977, 3:251-293. 
[4]Zhai Shikui(翟世奎), Chen Lirong(陈丽蓉), Zhang Haiqi(张海启). The Magamatism and Hydrothermal Activity in Okinawa Trough[M]. Beijing: Ocean Press, 2001(in Chinese).
[5]Wu Shiying(吴世迎). The World Oceanic Hydrothermal Sulfide Resources[M]. Beijing: Ocean Press, 2000(in Chinese).
[6]Arrhenius G O S, Bonatti E. Neptunism and Volcanism in the Ocean[A]. In:Sears M, ed. Progress in Oceanography[C]. London: Petgamon Press, 1965. 7-22.
[7]Rona P A,Scott S D. Axial processes of the mid Atlantic ridge[J].EOS, 1974, 55:292-295.
[8]Bertine K K, Keene J. Submarine barite-opal rocks of hydrothermal origin[J].Science, 1975, 188:150-152.
[9]Rona P A, Scott S D. A special issue on sea-floor hydrothermal mineralization: new perspectives[J].Economic Geology, 1993, 88(8):1 935-1 975.
[10]Luan Xiwu(栾锡武), Zhao Yiyang(赵一阳), Qin Yunshan(秦蕴珊),et al. The heat flux estimate from hydrothermal system to the ocean[J].Acta Oceanologica Sinica(海洋学报),2002,24(6):59-66(in Chinese).
[11]Binns R A, Scott S D, PACLARK Participants. Propagation of sea-floor spreading into continental crust, western Woodlark Basin, Papua New Guinea[J].CCOP/SOPAC Miscellaneous Report, 1989, 79: 14-16.
[12]Juster T C, Grove T L, Perfit M R. Experimental constraints on the generation of FeTi basalts, andesites, and rhyodacites at the Galapagos Spreading Center, 85°W and 95°W[J].Journal of Geophysical Research, 1989, 94:9 251-9 274.
[13]Tunnicliffe V. Hydrothermal vent of Explore Ridge, Northeast Pacific[J].Deep Sea Research, 1986, 33:401-412.
[14]Rona P A, Von Herzen R P. Introduction to special section on measurements and monitoring at the TAG hydrothermal field, Mid-Atlantic Ridge 26°N, 45°W[J].Geophysical Research Letters, 1996, 23:3 427-3 430.
[15]Humphris S E, Kleinrock M C. Detailed morphology of the TAG Active Hydrothermal Mound, Insights into its Formation and Growth[J].Geophysical Research Letters, 1996, 23:3 443-3 446.
[16]Woodruff L G, Shanks W C. Sulfur isotope study of chimney minerals and hydrothermal fluids from 21°N,Easr Pacific Rise: Hydrothermal sulfur sources and disequilibrium sulfate reduction[J].Journal of Geophysical Research, 1988, 93: 4 562-4 572.
[17]Embley R W, Chadwick Jr W W. Volcanic and hydrothermal processes associated with a recent phase of seafloor spreading at the northern Cleft Segment: Juan de Fuca Ridge[J].Journal of Geophysical Research, 1994,99:4 741-4 760.
[18]Wilson C, Charlou J L, Ludford E,et al.  Hydrothermal anomalies in the Lucky Strike segment (37°17′N)[J].Earth and Planetary Science Letters, 1996, 142: 467-477.
[19]Karson J A, Brown J R. Geologic setting of the snake pit hydrothermal site: An active vent field on the Mid-Atlantic Ridge[J].Marine Geophysical Research, 1988, 10: 91-107.
[20]Rona P A, Clague D A. Geologic controls of hydrothermal discharge on the northern Gorda Ridge[J].Geology, 1989,17: 1 097-1 101.
[21]Baker E T. A 6 year time series of hydrothermal plumes over the Cleft segment of the Juan de Fuca Ridge[J].Journal of Geophysical Research, 1994, 99: 4 889-4 904.
[22]Sinton J, Bergamis E, Batiza R,et al. Volcanological investigations at superfast spreading:Results from R/V Atlantis Cruise 3-31[J].Ridge Events, 1999,10:17-23.
[23]Haymon R M, Macdonald K C, Baron S,et al. Distribution of fine scale hydrothermal,volcanic, and tectonic features along the EPR crest, 17°15′-18°30′S: Results of near bottom acoustic and optical surveys (abstract)[J].Eos Transaction AGU, 1997,78:F705.
[24]Fouquet Y, von Stackelberg U, Charlou J L,et al. Metallogenesis in back-arc environments: The Lau Basin example[J].Economic Geology, 1993, 88:2 154-2 181.
[25]Rona P A, Trivett D A. Discrete and diffuse heat transfer at ASHES vent field, Axial Volcano, Juan de Fuca Ridge[J].Earth and Planetary Science Letters, 1992, 109:57-71.
[26]Lonsdale P, Batiza R, Simkin T. Metallogenesis at seamounts on the East Pacific Rise[J].Marine Technical Society Journal, 1982, 17: 54-61.
[27]Scheirer D S, Baker E T, Johnson K T M. Detection of hydrothermal plumes along the southeast Indian Ridge near the Amsterdam-St. Paul Plateau[J].Geophysical Research Letters, 1998, 25: 97-100.
[28]Luan Xiwu(栾锡武), Zhai Shikui(翟世奎), Gan Xiaoqun(干晓群). The characteristic of tectonophysics of the middle Okinawa Trough[J].Acta Sedimentologica Sinica(沉积学报), 2001, 19(1): 43-48.
[29]Chiba H, Nakashima K, Gamo T,et al. Hydrothermal activity at the Minami-Ensei Knoll, Okinawa Trough: Chemical characteristics of hydrothermal solutions[J].JAMSTECTR Deepsea Research. 1993, 9: 271-282.
[30]Lizasa K. Hydrothermal sulfides bearing Fe-Si oxyhydroxide deposits from the Coriolis trough,〖KG*2〗Vanuatu backarc, southweastern Pacific[J].Marine Geology, 1998, 145:1-21.
[31]Bogdanov Y A. Low temperature hydrothermal deposits of Franklin seamout, Woodlark Basin, Papua New Guinea[J].Marine Geology, 1997, 142: 99-117.
[32]Gamo T, Sakai H, Ishibashi J,et al. Hydrothermal plumes in the eastern Manus Basin, Bismarck Sea: CH4, Mn, Al, and pH anomalies[J].Deep Sea Research, 1993, 40: 2 335-2 349.
[33]Lisitzin A P, Lukashin V N, Gordeev V V,et al. Hydrological and geochemical anomalies associated with hydrothermal activity in SW Pacific marginal and back-arc basins[J].Marine Geology, 1997, 142: 7-45.
[34]Taylor B, Goodliffe A, Martinez F,et al. Continental rifting and initial sea-floor spreading in the Woodlark basin[J].Nature, 1995, 374 (6 522): 534-537.
[35]Lisitzin A P, Binns R A, Bogdanov Y A,et al. Active hydrothermal activity at Franklin Seamount, western Woodlark Sea (Papua New Guinea)[J].International Geology Review, 1991, 33: 914-929.
[36]Jin Xianglong(金翔龙), Yu Puzhi(喻普之). The tectonic characteristics and evolution of Okinawa Trough[J].Sciences in China(B)(中国科学B辑), 1987, 17(2): 196-203(in Chinese).
[37]Luan Xiwu(栾锡武), Gao Dezhang(高德章), Yu Puzhi(喻普之),et al.The crust velocity structure of a profile in the area of East China Sea and its vicinity[J].Progress in Geophysics(地球物理学进展), 2001,16(2):28-35(in Chinese).
[38]ZierenbergR A, Koski R A, Morton J L,et al. Genesis of massive sulfide deposits on a sediment-covered spreading center, Escanaba Trough, 41°N, Gorda Ridge[J].Economic Geology, 1993, 88: 2 069-2 098.
[39]Lonsdale P,Becker K. Hydrothermal plumes, hot springs and conductive heat flow in the southern trough of the Guaymas Basin[J].Earth and Planetary Science Letters, 1985, 73: 255-279.
[40]Georgen J E, Lin J. Three dimensional passive flow and temperature structure beneath oceanic ridge-ridge-ridge triple junctions[J].Earth and Planetary Science Letters, 2002, 204: 115-132.
[41]Gamo T, Nakayama E, Shitashima K,et al. Hydrothermal plumes at the Rodriguez Triple Junction, Indian ridge[J].Earth and Planetary Science Letters, 1996, 142: 261-270.
[42]Gamo T, Chiba H, Yamanaka T,et al. Chemical charactersitics of newly discovered black-smoker fluids and associated hydrothermal plumes at the Rodriguez Triple Junction, Central Indian ridge[J].Earth and Planetary Science Letters, 2001, 193: 371-379.
[43]Lafoy Y, Auzende J M, Ruellan E,et al. The 16 40'S triple junction in the North Fiji basin (SW Pacific)[J].Marine Geophysical Research, 1990, 12: 285-296.
[44]Halbach P, Koschinsky A, Seifert R,et al. Diffuse hydrothermal activity, biological communities, and mineral formation in the North Fiji Basin (SW Pacific): Preliminary results of the R/V SONNE cruise SO-134[J].InterRidge News, 1999, 8(1): 38-44.
[45]Luan Xiwu(栾锡武), Gao Dezhang(高德章), Yu Puzhi(喻普之),et al. Thermal conductivity of the Cenozoic layer of East China Sea shelf[J].Oceanologia et Limnologia Sinica(海洋与湖沼), 2002, 33(2): 151-159(in Chinese).

[1] 马其琦, 柯长青. 江苏近海有色可溶有机物时空分布特征[J]. 地球科学进展, 2017, 32(5): 524-534.
[2] 史忠林, 文安邦, 严冬春, 龙翼, 周萍. 7Be法估算土壤侵蚀速率若干问题的探讨[J]. 地球科学进展, 2016, 31(9): 885-893.
[3] 孙晓霞. 海洋微塑料生态风险研究进展与展望[J]. 地球科学进展, 2016, 31(6): 560-566.
[4] 陈志敏, 严松宏, 赵德安, 余云燕. 青藏地区地应力分布规律研究[J]. 地球科学进展, 2015, 30(8): 915-921.
[5] 黄鹏, 陈立奇, 蔡明刚. 全球海洋人为碳储量估算及时空分布研究进展[J]. 地球科学进展, 2015, 30(8): 952-959.
[6] 刘军, 于志刚, 臧家业, 孙涛, 赵晨英, 冉祥滨. 黄渤海有机碳的分布特征及收支评估研究[J]. 地球科学进展, 2015, 30(5): 564-578.
[7] 李佳霖, 秦松. 海洋微微型蓝细菌分子生态学研究进展[J]. 地球科学进展, 2015, 30(4): 477-486.
[8] 王晓宇, 赵进平, 李涛, 钟文理, 矫玉田. 2012年夏季挪威海和格陵兰海水文特征分析[J]. 地球科学进展, 2015, 30(3): 346-356.
[9] 段金龙, 张学雷, 李卫东, 李滨. 土壤多样性理论与方法在中国的应用与发展[J]. 地球科学进展, 2014, 29(9): 995-1002.
[10] 简阔, 傅雪海, 王可新, 张玉贵. 中国长焰煤物性特征及其煤层气资源潜力[J]. 地球科学进展, 2014, 29(9): 1065-1074.
[11] 常玉光, 白万备, 齐永安, 孙凤余, 王敏. 豫西寒武纪叠层石微生物化石组合及其沉积环境[J]. 地球科学进展, 2014, 29(4): 456-463.
[12] 刘春颖, 刘欢欢, 杨桂朋, 王莉莉, 张升辉. 夏季黄海冷水团海域的丙烯酸分布与海洋环境因子和叶绿素a变化之间的关系[J]. 地球科学进展, 2014, 29(3): 361-368.
[13] 熊欣, 徐文艺, 贾丽琼, 李骏. 斑岩铜矿成矿构造背景研究进展[J]. 地球科学进展, 2014, 29(2): 250-264.
[14] 李玉红, 詹力扬, 陈立奇. 北冰洋CH4研究进展[J]. 地球科学进展, 2014, 29(12): 1355-1361.
[15] 石学法,鄢全树. 西太平洋典型边缘海盆的岩浆活动[J]. 地球科学进展, 2013, 28(7): 737-750.