地球科学进展 ›› 2004, Vol. 19 ›› Issue (6): 925 -930. doi: 10.11867/j.issn.1001-8166.2004.06.0925

研究论文 上一篇    下一篇

SARS传播时间过程的参数反演和趋势预测
韩卫国 1, 2;王劲峰 1;刘旭华 1, 2   
  1. 中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室,北京 100101;中国科学院研究生院,北京 100039
  • 收稿日期:2004-01-29 修回日期:2004-05-24 出版日期:2004-12-20
  • 通讯作者: 韩卫国(1976-),男,山西省夏县人,博士研究生,主要从事空间分析、时空数据挖掘、GIS应用与开发方面研究. E-mail:E-mail: hanwg@lreis.ac.cn
  • 基金资助:

    国家高技术研究发展计划(863计划)项目“SARS流行病学资料的实时收集、分析和趋势预测”(编号:2003AA208401);国家自然科学基金项目“SARS传播时空模型研究”(编号:40341002)资助.

BACK ANALYZING PARAMETERS AND PREDICTING TREND OF SARS TRANSMISSION

HAN Wei-guo 1, 2, WANG Jin-feng 1, LIU Xu-hua 1, 2   

  1. 1.State Key Laboratory of Resources & Environmental Information System, Institute of Geographic Sciences & Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;2. Graduate School of Chinese Academy of Sciences, Beijing 100039, China
  • Received:2004-01-29 Revised:2004-05-24 Online:2004-12-20 Published:2004-12-01

以公布的香港和北京SARS疫情数据为实例,采用SIR模型对SARS传播的时间过程进行参数反演,获取两地SARS高峰期、住院人数、移出系数等重要参数,模型计算结果与实际数据基本相符,通过参数反演很好地解释了SARS时间传播过程,说明SIR模型可以用于SARS传播的数据拟合、趋势预测和过程模拟。

This paper uses SIR model to back-analyze the parameters of SARS transmission based on the data released by the health authorities of Beijing and Hong Kong, we get the important parameters such as the peak period, the hospitalized cases and the removed parameter. It can be seen that these parameters of the model allow for better understanding of the SARS transmission because the result fits the actual data approximately. As a result, SIR model could be used to fit data, predict trend and simulate process of SARS transmission.

中图分类号: 

[1]Gong Jianhua(龚建华), Sun Zhanli(孙战利), Li Xiaowen(李小文),et al. Simulation and analysis of control of SARS[J].Journal of Remote Sensing(遥感学报), 2003, 7(4): 260-265(in Chinese).
[2]Yan Shouyong(阎守邕), Liu Yalan(刘亚岚), Li Xiaowen(李小文),et al. SARS spatial transmission pattern and its application to design of disease surveillance and control information system[J].Journal of Remote Sensing(遥感学报), 2003, 7(4): 266-272(in Chinese).
[3]Shi Yaolin(石耀霖). Dynamics stochastic model of SARS transmission[J].Chinese Science Bulletin(科学通报), 2003, 48(7): 1 373-1 377(in Chinese).
[4]Meng Wei(孟伟), Luo Hong(罗宏). SARS transmission and environmental safety[J].Research of Environmental Sciences(环境科学研究), 2003, 16(3): 1-2(in Chinese).
[5]Yang Zhicong(杨智聪), Du Lin(杜琳), Wang Ming(王鸣),et al. Analysis of effect of air pressure and air temperature on outbreak and epidemic of SARS[J].Chinese Journal of Public Health(中国公共卫生), 2003, 19(9): 1 028-1 030(in Chinese).
[6]Wang Duo(王铎), Zhao Xiaofei(赵晓飞). Empirical analysis and forecasting of SARS epidemic situation[J].Journal of Peking University(Health Sciences)(北京大学学报,医学版), 2003, 35(S1): 72-74(in Chinese).
[7]Wang Zhengxing(王正行), Zhang Jianwei(张建玮), Tang Yinan(唐毅南). A model analysis and evaluation of the SARS epidemic in Beijing[J].Physics(物理), 2003,32(5):341-344(in Chinese).
[8]Ye Yanlin(叶沿林), Pang Danyang(庞丹阳), Liu Xunxu(刘循序). Analysis of the current SARS epidemic and the forecast for Beijing[J].Physics(物理), 2003, 32(5): 345-347(in Chinese).
[9]Yang Fangting(杨方廷), Hou Lihua(侯立华), Han Jun(韩军),et al. Simulation analysis for the SARS epidemiological process in Beijing[J].Journal of System Simulation(系统仿真学报), 2003, 15(7): 2 991-2 994(in Chinese).
[10]Chen Jirong(陈吉荣), Yang Fangting(杨方廷), Zhan Shouyi(战守义),et al. Processing on the parameters and initial values of SARS simulation model[J].Journal of System Simulation(系统仿真学报), 2003, 15(7): 2 995-2 998(in Chinese).
[11]Huang Desheng(黄德生), Guan Peng(关鹏), Zhou Baosen(周宝森). Fitness of morbidity and discussion of epidemic characteristic of SARS based on logistic models[J].Chinese Journal of Public Health(中国公共卫生), 2003, 19(6): T1-T2(in Chinese).
[12]Fang Zhaoben(方兆本), Li Hongxing(李红星), Yang Jianping(杨建萍). Models and prediction of the SARS prevalence[J].Application of Statistics and Management(数理统计与管理), 2003, 22(5): 48-53(in Chinese).
[13]Li Zhonglai(李仲来), Cui Hengjian(崔恒建), Yang Hua(杨华),et al. SI models and piecewise SI models on SARS forecasting[J].Journal of Remote Sensing(遥感学报), 2003, 7(5): 345-349(in Chinese).
[14]Wu Kaichen(吴开琛), Wu Kailu(吴开录), Chen Wenjiang(陈文江),et al. Mathematical model and prediction of epidemic trend of SARS[J].China Tropical Medicine(中国热带医学), 2003, 3(4): 421-426(in Chinese).
[15]Jiang Qiyuan(姜启源). Mathematical Models[M]. Beijing: Higher Education Press, 2001.111-119(in Chinese).
[16]Yan Gang(颜刚). Further study of SIR model [J].Journal of First Military Medical University(第一军医大学学报), 2001, 21(2): 141-142(in Chinese).
[17]Kang Lishan(康立山), Xie Yun(谢云), You Shiyong(尤矢勇),et al. Nonnumeric Parallel Algorithm-Simulated Anneal Algorithm[M]. Beijing: Science Press,2000.22-55(in Chinese).
[18]Xu Xuhai(徐绪海), Zhu Fangsheng(朱方生). Numerical Method of Stiff Differential Equation[M]. Hubei: Wuhan University Press, 1997. 16-34(in Chinese).
[19]Donnelly Christl, Ghani Azra, Leung Gabriel,et al. Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Kong[EB/OL].http://image.thelancet.com/extras/03art4453web.pdf, 2003, 5.
[20]Riley S, Fraser C, Donnelly C A,et al. Transmission dynamics of the etiological agent of SARS in Hong Kong: Impact of public health interventions[J].Science, 2003, 300: 1 961-1 966.
[21]Lipsitch M, Cohen T, Cooper B,et al. Transmission dynamics and control of severe acute respiratory syndrome [J].Science, 2003, 300: 1 966-1 970.
[22]Kermack W O, McKendrick W G. A contribution to the mathematical theory of epidemics[J].Proceedings of the Royal Society of London, Series A, 1927, 115:  700-721.
[23]Bailey Norman T J. The Mathematical Theory of Infectious Diseases and its Applications(2nd)[M]. New York: Oxford University Press, 1975.
[24]Wang J. Modeling epidemic in space and time[A]. In: Association of American Geographers Annual Meeting[C]. US, Los Angles,2002.

[1] 李新,小池俊雄,程国栋. 一个基于模拟退火法的陆面数据同化算法[J]. 地球科学进展, 2003, 18(4): 632-636.
阅读次数
全文


摘要