地球科学进展 ›› 2000, Vol. 15 ›› Issue (5): 592 -297. doi: 10.11867/j.issn.1001-8166.2000.05.0592

全球变化研究 上一篇    下一篇

USGCRP碳循环研究的最新动向
王绍强 ,周成虎 ,夏 洁   
  1. ①中国科学院地理研究所资源与环境信息系统国家重点实验室,北京 100101;②北京师范大学资源与环境科学系,北京 100875
  • 收稿日期:1999-12-28 修回日期:2000-03-06 出版日期:2000-10-01
  • 通讯作者: 王绍强(1972-),男,湖北人,博士生,主要从事全球变化、地理信息系统、遥感应用等方面的研究。
  • 基金资助:

    国家“九五”重点科技攻关专题“我国主要森林区及土地利用变化对主要温室气体净排放的影响及适应对策”(编号:96-911-01-01)和中国科学院“九五”重大项目“亚洲东部地区生物量遥感估算”(编号:KZ95T-03-02-04)联合资助。

THE LATEST TENDENCY ON CARBON CYCLE RESEARCH FROM USGCRP

WANG Shao-qiang ,ZHOU Cheng-hu ,XIA Jie   

  1. ①The State Key Laboratory of Resources and Environmental Information System,Institute of Geography,Chinese Academy of Science,Beijing 100101,China;②Department of Resources and Environment,Beijing Normal University,Beijing 100875,China
  • Received:1999-12-28 Revised:2000-03-06 Online:2000-10-01 Published:2000-10-01

碳循环研究是国际全球变化研究的热点之一。根据美国全球变化研究委员会提出的“美国全球变化研究计划”(USGCRP),详细介绍了美国碳循环研究的目标、重点研究计划和行动。USGCRP碳循环研究的主要目标是提供碳源和碳汇的综合评价,其重点在于确定北美洲陆地碳汇的数量、位置和成因,通过设立集成观测、过程研究和建模研究的项目来减少其中的不确定性,并提供北美洲陆地碳汇及其变化的更精确估计。USGCRP将从大气、海洋、陆地和人类因素方面结合适当的研究方法,提供多样化的碳循环时空信息,而且提供必要的北美洲陆地碳汇状态的详细描述。在基本反映美国碳循环研究最新趋势的同时,提出了中国碳循环研究应注意的方向。

According to United States Global Change Research Program prepared by the subcommittee on Global Change Research of the Committee on Environment and Natural Resources Research, this paper introduces the goal, activity and highlight of carbon cycle study of the program. The main goal of USGCRP' s Carbon Cycle Science Program is to provide synthetically understand of carbon sources and sinks. The initiative focuses on determining the location, magnitude, and cause of carbon sink in North America, and how North America compares to other key regions. Because estimation of the Northern Hemisphere sink range widely, a program of USGCRP integrated observations, process research, and modeling will narrow this range and provide a more accurate estimation of the North America terrestrial
sink and its variability. USGCRP' s strategy will be to combine research approaches from the atmospheric,oceanic, terrestrial and human dimension aspects of the carbon cycle, provide information on various temporal and spatial scales, necessary to providing an accurate picture of the current state of the terrestrial carbon sink over North America. USGCRP will develop new technologies for measuring the atmosphere-land-ocean carbon system. Different satellites and sensors will be launched to provide improved global measurements of vegetation and accurate data of ocean biology. An improved, long-term, integrated monitoring strategy for carbon measurements will be suggested in the atmosphere, ocean and land ecosystems.Because of US' leading position on this field, this paper implies basically the international new tendency on carbon cycle study. Meanwhile, directions on carbon cycle research in China were analyzed.

中图分类号: 

[1] Moore Berrein, Braswell Jr B H.地球的新陈代谢:了解碳循环[J].刘文新译. AMBIO(人类环境杂志), 1994, 23(1): 1~12.
[2] The Subcommittee on Global Change Research, Committee on Environment and Natural Resources of the National Science and Technology Council. Our changing planet: The FY 1994 US Global Change Research Program[R]. Washington, 1993.1~84.
[3] The Subcommittee on Global Change Research, Committee on Environment and Natural Resources of the National Science and Technology Council. Our Changing Planet: The FY 1995 US Global Change Research Program[R]. Washington, 1994.1~132.
[4] The Subcommittee on Global Change Research, Committee on Environment and Natural Resources of the National Science and Technology Council. Our Changing Planet: The FY 1996 US Global Change Research Program[R]. Washington, 1995.1~152.
[5] The Subcommittee on Global Change Research, Committee on Environment and Natural Resources of the National Science and Technology Council. Our Changing Planet: The FY 1997 US Global Change Research Program[R]. Washington, 1996.1~162.
[6] The Subcommittee on Global Change Research, Committee on Environment and Natural Resources of the National Science and Technology Council. Our Changing Planet: The FY 1998 US Global Change Research Program[R]. Washington, 1997.1~118.
[7] The Subcommittee on Global Change Research, Committee on Environment and Natural Resources of the National Science and Technology Council. Our Changing Planet: The FY 1999 US Global Change Research Program[R]. Washington, 1998.1~130
[8] The Subcommittee on Global Change Research, Committee on Environment and Natural Resources of the National Science and Technology Council. Our Changing Planet: The FY 2000 US Global Change Research Program[R]. Washington, 1999.1~100.
[9] Committee on Global Change Research of the US National Research Council. Global Environmental Change: Research Pathways for the Next Decade[R]. National Academy Press,1999.
[10] 赵其国.土壤圈在全球变化中的意义与研究内容[J].地学前缘, 1997, 4(2):153~162.
[11] 徐德应.人类经营活动对森林土壤碳的影响[J].世界林业研究, 1994, 5: 26~31.
[12] 汪业勖,赵士洞,牛栋.陆地土壤碳循环的研究动态[J].生态学杂志, 1999, 18(5): 29~35.
[13] 陈庆强,沈承德,易惟熙,等.土壤碳循环研究进展[J].地球科学进展,1998, 13(6):555~563.
[14] 汪业勖.中国森林生态系统区域碳循环研究[博士论文D].北京:中国科学院自然资源综合考察委员会, 1999.
[15] 方精云,刘国华,徐嵩龄.中国陆地生态系统的碳库[A].王庚辰,温玉璞,主编.温室气体浓度和排放监测及相关过程[C].北京:中国环境科学出版社, 1996.109~128.
[16] Fang Jingyun, Liu Guohua,et al. Soil carbon pool in China and its global significance[J]. Journal of Environmental Sciences, 1996, 8(2): 249~254.
[17] Fang Jing-Yun, Geoff Wang G, Liu Guo-Hua,et al. Forest biomass of China: an estimate based on the biomass-volume relationship[J]. Ecological Applications, 1998, 8(4): 1 084~1 091.
[18] 王绍强,周成虎,罗承文.中国陆地自然植被碳量空间分布特征探讨[J].地理科学进展, 1999, 18(3): 238~244.
[19] 李晓兵.国际土地利用—土地覆盖变化的环境影响研究[J].地球科学进展, 1999, 14(4): 395~400.
[20] 王艳芬,陈佐忠, Larry T Tieszen.人类活动对锡林郭勒地区主要草原土壤有机碳分布的影响[J].植物生态学报,1998, 22(6): 545~551.
[21] 李忠佩,王效举.红壤丘陵区土地利用方式变更后土壤有机碳动态变化的模拟[J].应用生态学报, 1998, 9(4): 365~370.
[22] 李凌浩.土地利用变化对草原生态系统土壤碳贮量的影响[J].植物生态学报, 1998, 22(4): 300~302.
[23] 李凌浩,刘先华,陈佐忠.内蒙古锡林河流域羊草草原生态系统碳素循环研究[J].植物学报, 1998, 40(10): 955~961.
[24] 王其兵,李凌浩,刘先华,等.内蒙古锡林河流域草原土壤有机碳及氮素的空间异质性分析[J].植物生态学报, 1998, 22(5): 409~414.
[25] 王岩,沈其荣,史瑞和,等.有机、无机肥料施用后土壤生物量C、N、P的变化及N素转化[J].土壤学报, 1998, 35(2):227~234.
[26] 袁道先.岩溶作用与碳循环研究进展[J].地球科学进展,1999, 14(5): 425~432.
[27] 李心清,万国江.碳酸盐岩氧、碳稳定同位素地球化学研究目前面临的几个问题[J].地球科学进展, 1999, 14(3): 262~268.
[28] 李意德,吴仲民,曾庆波,等.尖峰岭热带山地雨林生态系统碳平衡的初步研究[J].生态学报, 1998, 18(4): 371~378.
[29] 吴仲民,曾庆波,李意德,等.尖峰岭热带森林土壤C储量和CO2排放量的初步研究[J].植物生态学报, 1997, 21(5):416~423.
[30] 吴仲民,曾庆波,李意德,等.尖峰岭热带山地雨林C素库及皆伐影响的初步研究[J].应用生态学报, 1998, 9(4): 341~344.
[31] 郭李萍,林而达.减缓全球变暖与温室气体吸收汇研究进展[J].地球科学进展, 1999, 14(4): 384~390.

[1] 李旭明,李来峰,王浩贤,王野,陈旸. 土壤中次生与碎屑组分的差异性剥蚀[J]. 地球科学进展, 2020, 35(8): 826-838.
[2] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[3] 吴泽燕,章程,蒋忠诚,罗为群,曾发明. 岩溶关键带及其碳循环研究进展[J]. 地球科学进展, 2019, 34(5): 488-498.
[4] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[5] 曲建升, 肖仙桃, 曾静静. 国际气候变化科学百年研究态势分析 *[J]. 地球科学进展, 2018, 33(11): 1193-1202.
[6] 汪品先. 巽他陆架——淹没的亚马逊河盆地?[J]. 地球科学进展, 2017, 32(11): 1119-1125.
[7] 贾国东. 冰期出露的巽他陆架:重要的陆地碳储库?[J]. 地球科学进展, 2017, 32(11): 1157-1162.
[8] 聂红涛, 王蕊, 赵伟, 罗晓凡, 祁第, 鹿有余, 张远辉, 魏皓. 北冰洋太平洋扇区碳循环变化机制研究面临的关键科学问题与挑战[J]. 地球科学进展, 2017, 32(10): 1084-1092.
[9] 史培军, 王爱慧, 孙福宝, 李宁, 叶涛, 徐伟, 王静爱, 杨建平, 周洪建. 全球变化人口与经济系统风险形成机制及评估研究[J]. 地球科学进展, 2016, 31(8): 775-781.
[10] 焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.
[11] 赵彬, 姚鹏, 于志刚. 有机碳—氧化铁结合对海洋环境中沉积有机碳保存的影响[J]. 地球科学进展, 2016, 31(11): 1151-1158.
[12] 吴金水, 葛体达, 祝贞科. 稻田土壤碳循环关键微生物过程的计量学调控机制探讨[J]. 地球科学进展, 2015, 30(9): 1006-1017.
[13] 吴炳方, 邢强. 遥感的科学推动作用与重点应用领域[J]. 地球科学进展, 2015, 30(7): 751-762.
[14] 黄邦钦, 柳欣. 边缘海浮游生态系统对生物泵的调控作用[J]. 地球科学进展, 2015, 30(3): 385-395.
[15] 艾丽坤, 王晓毅. 全球变化研究中自然科学和社会科学协同方法的探讨[J]. 地球科学进展, 2015, 30(11): 1278-1286.
阅读次数
全文


摘要