地球科学进展 ›› 2014, Vol. 29 ›› Issue (9): 985 -994. doi: 10.11867/j.issn.1001-8166.2014.09.0985

综述与评述    下一篇

SAR监测冰川变化研究进展
黄磊,李震,周建民,田帮森   
  1. 中国科学院遥感与数字地球研究所,北京 100094
  • 收稿日期:2014-04-30 出版日期:2014-09-10
  • 基金资助:
    国家自然科学基金项目“基于全极化合成孔径雷达的冰川边界提取与雪线探测”(编号:41101392)和“极化合成孔径雷达探测冰川表碛理论与方法研究”(编号:41471307)资助.

Glacier Change Monitoring Using SAR: An Overview

Huang Lei, Li Zhen, Zhou Jianmin, Tian Bangsen   

  1. Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China
  • Received:2014-04-30 Online:2014-09-10 Published:2014-09-10
遥感现已成为大范围冰川制图与监测的必备手段。合成孔径雷达(SAR)全天候的成像能力,对地表湿度、粗糙度的高度敏感性,以及对地物一定的穿透能力,使其在冰川制图与监测中展现出巨大的潜力。SAR对冰川的制图与监测理论方法还在不断完善,目前正处于快速发展阶段,是冰川遥感研究的一个热点。针对国内外近年来研究进展,对SAR通过散射差异识别雪冰带、监测雪冰界线与冰川物质平衡之间的关联、干涉法与相关算法监测运动速度、干涉生成DEM监测冰川厚度变化等方面的新成果进行论述,阐明了SAR冰川探测的优势和局限性,并对未来若干极具潜力的SAR冰川探测理论和方法进行了展望。
Remote sensing is now widely used in glacier classification and monitoring. The synthetic aperture radar is hardly influenced by weather conditions and sensitive to ground wetness and roughness. Meanwhile, it has the penetration ability to ground objects. So it is promising in glacier mapping and monitoring. Until now SAR application in glacier is limited in theory and experiments, which is a hot topic in remote sensing of glacier research. This paper reviews the application of SAR in glacier zones recognition using the scattering property difference, flow velocity generation using InSAR and feature tracking, and glacier thickness monitoring using DInSAR generated DEM. The merits and limitations of SAR for glacier monitoring are investigated, and the promising theory and techniques for SAR to detect glaciers are introduced.

中图分类号: 

[1] Jacob T, Wahr J, Pfeffer W, et al. Recent contributions of glaciers and ice caps to sea level rise[J]. Nature, 2012, 482: 514-518.
[2] TrouvéE, Vasile G, Gay M, et al. Combing airborne photographs and spaceborne SAR data to monitoring temperature glaciers: Potentials and limits[J]. IEEE Transactions on Geoscience and Remote Sensing,2007, 45: 905-924.
[3] Cao Meisheng, Li Xin, Chen Xianzhang, et al. Remote Sensing of the Cryosphere[M]. Beijing: Science Press, 2006. [曹梅盛,李新,陈贤章,等.冰冻圈遥感[M]. 北京: 科学出版社, 2006.]
[4] Cao Bo, Wang Jie, Zhang Chen, et al. The remote sensing in research of modern glacier change[J]. Remote Sensing Technology and Application, 2011, 26: 52-59. [曹泊,王杰,张忱, 等.遥感技术在现代冰川变化研究中的应用[J].遥感技术与应用, 2011, 26: 52-59.]
[5] Li Zhen, Liao Jingjuan. Synthetic Aperture Radar Ground Parameters Inversion Models and Methods[M]. Beijing: Science Press, 2011. [李震,廖静娟.合成孔径雷达地表参数反演模型与方法[M].北京:科学出版社,2011.]
[6] Cuffey K M, Paterson W S B. The Physics of Glaciers, Fourth Edition[M]. USA and UK: Elsevier, 2010:1-16.
[7] Forster R, Isacks B, Das S. Shuttle imaging radar (SIR-C/X-SAR) reveals near-surface properties of the South Patagonian Icefield[J]. Journal of Geophysical, 1996, 101:23 169-23 180.
[8] Smith L C, Forster R R, Isacks B, et al. Seasonal climatic forcing of alpine glaciers revealed with orbital synthetic aperture radar[J]. Journal of Glaciology, 1997, 43: 480-488.
[9] Fung A. Microwave Scattering and Emission Models and Their Applications[M]. Boston and London: Artech House, 1994.
[10] Rott H, Mtzler C. Possibilities and limits of synthetic aperture radar for snow and glacier surveying[J]. Annals of Glaciology, 1989, 9: 195-199.
[11] Rees W G, Dowdeswell J A, Diament A D. Analysis of ERS-1 synthetic aperture radar from Nordaustlandet, Svalbard[J]. International Journal of Remote Sensing, 1995, 16: 905-924.
[12] Baghdadi N, Livingstone E, Bernier M. Airborne C-band measurements of wet snow-covered areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36:1 977-1 981.
[13] Langley K, Hamran S, Hgda K, et al. From glacier facies to SAR backscatter zones via GPR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46: 2 506-2 516.
[14] Shi J, Dozier J. Measurements of snow- and glacier-covered areas with single-polarization SAR[J]. Annals of Glaciology, 1993, 17:72-76.
[15] Singh G, Venkataraman G, Yamaguchi Y, et al. Capability assessment of fully polarimetric ALOS-PALSAR data for discriminating wet snow from other scattering types in mountainous regions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52: 1 177-1 196.
[16] Rau F. Radar glacier zones and their boundaries as indicators of glacier mass balance and climatic variability[C]∥Proceedings of EARSeL-SIG workshop Land Ice and Snow.Dresden/FRG, 2000.
[17] Rau F, Braun M, Saurer H, et al. Monitoring multi-year snow cover dynamics on the Antarctic Peninsula using SAR imagery[J]. Polarforschung, 2000, 67: 27-40.
[18] Fujita K, Seko K, Ageta Y. Superimposed ice in glacier masss balance on the Tibetan Plateau[J]. Journal of Glaciology,1996, 42: 454-460.
[19] Brandt O, Kohler J, Lüthje M. Spatial mapping of multi-year superimposed ice on the glacier Kongsvegen, Svalbard[J]. Journal of Glaciology, 2008, 54: 73-80.
[20] Nicolaus M, Haas C, Bareiss J. Observation of superimposed ice formation at melt-onset on fast ice on Kongsfjorden, Svalbard[J]. Physics and Chemistry of the Earth, 2003, 28: 1 241-1 248.
[21] Langley K, Hamran S, Hgda A, et al. Use of C-band ground penetrating radar to determine backscatter sources within glaciers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45: 1 236-1 246.
[22] Casey A, Kelly E. Estimating the equilibrium line of Devon Ice Cap, Nunavut, from RADARSAT-1 ScanSAR wide imagery[J]. Canadian Journal of Remote Sensing, 2010, 36:S41-S55.
[23] Knig M, Winther J, Isaksson E. Measuring snow and glacier ice properties from satellite[J]. Review of Geophysics, 2001, 39: 1-27.
[24] Langley K, Lacroix P, Hamran S, et al. Source of backscatter at 5.3 GHz from a superimposed ice and firn area revealed by multi-frequency GPR and cores[J]. Journal of Glaciology, 2009, 55: 373-383.
[25] Zhou Jianmin, Li Zhen, Xing Qiang. Deriving glacier border information based on analysis of decorrelation in SAR interferometry[J]. Journal of Glaciology and Geocryology, 2010, 32:133-138. [周建民,李震,邢强.基于雷达干涉失相干特性提取冰川边界方法研究[J]. 冰川冻土,2010,32:133-138.]
[26] Rott H, Davis E. Multi-parameter airborne SAR experiments at an Alpine test site[C]∥ IGARSS.Espoo:IEEE Press, 1991:1 563-1 566.
[27] Knig M, Winther J, Knudsen T, et al. Firn-line detection on Austre Okstindbreen, Norway, with airborne multipolarization SAR[J]. Journal of Glaciology, 2001, 47: 251-257.
[28] Shimoni M, Borghys D, Heremansm R, et al. Fusion of PolSAR and PolInSAR data for land cover classification[J]. International Journal of Applied Earth Observation and Geoinformation, 2009, 11: 169-180.
[29] Cloude R, Pottier A. Review of target decomposition theorems in radar polarimetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34: 498-518.
[30] Neunann M, Reigber A, Ferro-Famil L. Data classification based on PolInSAR coherence shapes[C]∥IGARSS. Soul: IEEE Press, 2005:4 852-4 855.
[31] Huang Lei, Li Zhen, Tian Bangsen, et al. Classification and snow line detection for glacial areas using the polarimetric SAR image[J]. Remote Sensing of Environment, 2011, 115: 1 721-1 732.
[32] Akbari V, Doulgeris P, Eltoft T. Monitoring glacier changes using multitemporal multipolarization SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52: 3 729-3 741.
[33] Albright P, Painter H, Roberts A, et al. Classification of surface types using SIR-C/X-SAR, Mount Everest area, Tibet[J]. Journal of Geophysical, 1998, 103: 25 823-25 837.
[34] Arigony-Neto J. A time series of SAR data for monitoring changes in boundaries of glacier zones on the Antarctic Peninsula[J]. Annals of Glaciology, 2007, 46:55-60.
[35] Pellikka P, Rees G. Remote Sensing of Glaciers[M]. London:Taylor & Francis Group, 2010.
[36] Han Haidong. Modeling the Ice Ablation Undera Supraglacial Debris Layer—A Case Study of Koxkar Glacier[D]. Lanzhou:Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 2007. [韩海东. 冰川表碛下的冰面消融模拟研究——以科其喀尔为例[D].兰州:中国科学院寒区旱区环境与工程研究所, 2007.]
[37] Paul F, Bolch T, Kb A, et al. The glaciers climate change initiative: Methods for creating glacier area, elevation change and velocity products[J]. Remote Sensing of Environment, 2014, in press.
[38] Paul F, Huggel C, Kb A. Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers[J]. Remote Sensing of Environment, 2004, 89: 510-518.
[39] Brenning A, Long S, Fieguth P. Detecting rock glacier flow structures using Gabor filters and IKONOS imagery[J]. Remote Sensing of Environment, 2012, 125: 227-237.
[40] Ranzi R, Grossi G, Iacovelli L, et al. Use of multispectral ASTER images for mapping debris-covered glaciers within the GLIMS project[C]∥IGARSS. Alaska: IEEE Press,2004:1 144-1 147.
[41] Bolch T, Buchroithner F, Kunert A. Automated delineation of debris-covered glaciers based on ASTER data[C]∥27# EARSel symposium Geoinformation in Europe. Netherlands, 2007:403-410.
[42] Zhang Y, Fujita K, Liu S, et al. Distribution of debris thickness and its effect on ice metl at Hailuogou Glacier, southeastern Tibetan Plateau, using in situ surveys and ASTER imagery[J]. Journal of Glaciology, 2011, 57: 1 147-1 157.
[43] Shukla A, Arora K, Gupta P. Synergistic approach for mapping debris-covered glaciers using optical thermal remote sensing data with inputs from geomorphometric parameters[J]. Remote Sensing of Environment, 2010, 114: 1 378-1 387.
[44] Song Bo, He Yuanqing, Pang Hongxi, et al. Identifying automatically the debris-covered glaciers in China’s monsoonal temperature glacier regions based on remote sensing and GIS[J]. Journal of Glaciology and Geocryology, 2007, 29: 456-462. [宋波,何元庆,庞洪喜. 基于遥感和GIS的我国季风海洋型冰川冰碛物覆盖型冰川边界的自动识别[J]. 冰川冻土,2007, 29:456-462.]
[45] Atwood K, Meyer F, Arendt A. Using L-band SAR coherence to delineate glacier extent[J]. Canadian Journal of Remote Sensing, 2010, 36:S186-S195.
[46] Jiang Zongli, Ding Yongjian, Liu Shiyin, et al. A study of the debris-covered glacier limit based on SAR[J]. Advances in Earth Science, 2012, 27: 1 245-1 251. [蒋宗立,丁永建,刘时银,等. 基于SAR的表碛覆盖型冰川边界定位研究[J].地球科学进展,2012, 27: 1 245-1 251.]
[47] Huang L, Li Z, Tian B, et al. Recognition of supraglacial debris in the Tianshan Mountains on polarimetric SAR images[J]. Remote Sensing of Environment, 2014, 145: 47-54.
[48] Östrem G. Ice melting under a thin layer of moraine, and the existence of ice cores in moraine ridges[J]. Geografiska Annaler, 1959, 41: 228-230.
[49] Xie Changwei. Analysis and Simulations of the Hydrological Characteristics of Keqikaer Glacier at the South Slope of Mt. Tumuer, West China[D].Lanzhou: Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 2006.[谢昌卫.托木尔峰南坡科其喀尔冰川区水文特征分析及模拟研究[D].兰州:中国科学院寒区旱区环境与工程研究所,2006.]
[50] Foster A, Brock W, Culter J, et al. A physically based method for estimating supraglacial debris thickness from thermal band remote-sensing data[J]. Journal of Glaciology,2012, 58: 677-691.
[51] Juen M, Mayer C, Lambrecht A, et al. Impact of varying debris cover thickness on ablation: A case study for Koxkar Glacier in the Tien Shan[J]. The Cryosphere, 2014, 8:377-386.
[52] Adam S. Glacier snow line mapping using ERS-1 SAR imagery[J]. Remote Sensing of Environment, 1997, 61:46-54.
[53] Benn D, Lehmkuhl F. Mass balance and equilibrium line altitudes of glaciers in high-mountain environments[J]. Quaternary International, 2000, 65/66: 15-29.
[54] Huang L, Li Z, Tian B, et al. Monitoring glacier zones and snow/firn line changes in the Qinghai-Tibetan Plateau using C-band SAR imagery[J]. Remote Sensing of Environment, 2013, 137: 17-30.
[55] Liu H, Wang L, Jezek C. Automated delineation of dry and melt snow zones in Antarctica using active and passive microwave observation from space[J]. IEEE Transaction on Geoscience and Remote Sensing, 2006, 44: 2 152-2 163.
[56] Jaenicke J, Mayer C, Schapper K, et al. The use of remote-sensing data for mass-balance studies at Mýrdalsjökull ice cap, Iceland[J]. Journal of Glaciology,2006, 52: 565-573.
[57] Hall K, Williams S, Barton S, et al. Evaluation of remote-sensing technique to measure decadal-scale changes of Hofsjkull ice cap, Iceland[J]. Journal of Glaciology, 2000, 46:375-388.
[58] Jing Zhefan, Zhou Zaiming, Liu Li. Progress of the research on glacier velocity in China[J]. Journal of Glaciology and Geocryology,2010, 32: 750-754. [井哲帆,周在明,刘力. 中国冰川运动速度研究进展[J]. 冰川冻土,2010,32: 750-754.]
[59] Wang Chao, Zhang Hong, Liu Zhi. Spaceborne InSAR Interferometry[M]. Beijing:Science Press,2002.[王超,张红,刘智.星载合成孔径雷达干涉测量[M]. 北京:科学出版社,2002.]
[60] Massonnet D, Feigl K. Radar interferometry and its application to changes in the Earth’s surface[J]. Reviews of Geophysics,1998, 36: 441-450.
[61] Li Zhen, Zhou Jianmin, Tian Bangsen, et al. Progress in polarimetric and interferometric SAR applications[J]. Journal of Remote Sensing, 2009, 13(Suppl.):283-289.[李震,周建民,田帮森,等. 极化与干涉合成孔径雷达应用方法研究进展[J]. 遥感学报,2009,13(增刊):283-289.]
[62] Goldstein M, Engelhardt H, Kamb B, et al. Satellite Radar Interferometry for Monitoring Ice Sheet Motion: Application to an Antarctic Ice Stream[J]. Science, 1993, 262:1 525-1 530.
[63] Cheng X, Xu G. The integration of JERS-1 and ERS SAR in differential interferometry for measurement of complex glacier motion[J]. Journal of Glaciology, 2006, 52: 80-88.
[64] Zhou Jianmin. Analysis and Extraction of Mountain Glacier Parameters Using SAR Interferometry[D]. Beijing: Institute of Remote Sensing Applications, Chinese Academy of Sciences, 2009.[周建民,基于SAR干涉测量的山地冰川参数提取与分析[D].北京:中国科学院遥感应用研究所,2009.]
[65] Li Jia. Deriving Surface Motion of Mountain Glaciers in Tian Shan from PALSAR Images[D]. Changsha: Central South University, 2012. [李佳.利用PALSAR影像监测天山冰川流速[D].长沙:中南大学,2012.]
[66] Zhou J, Li Z, Li X, et al. Movement estimate of the Dongkemadi Glacier on the Qinghai-Tibetan Plateau using L-band and C-band spaceborne SAR data[J]. International Journal of Remote Sensing,2011, 32: 6 911-6 928.
[67] Yan Shiyong. Research on Extraction of Alpine Glacier Surface Movement by SAR Remote Sensing[D]. Beijing: Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences,2013.[闫世勇.山地冰川表面运动雷达遥感监测方法研究[D].北京:中国科学院遥感与数字地球研究所,2013.]
[68] Fallourd R, Harant O, Trouvé E. Monitoring temperature glacier displacement by multi-temporal TerraSAR-X images and continuous GPS measurements[J]. IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing, 2011, 4: 372-386.
[69] Rignot E, Echhelmeyer K, Krabill W. Penetration depth of interferometric synthetic-aperture radar in snow and ice[J]. Geophysical Research Letters, 2001, 28: 3 501-3 504.
[70] Zhou Jianmin, Li Zhen, Li Xinwu. Research on rules of the valley glacier motion in western China based on ALOS/PALSAR interferometry[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38: 341-347. [周建民,李震,李新武. 基于ALOS/PALSAR雷达干涉数据的中国西部山谷冰川冰流运动规律研究[J]. 测绘学报,2009, 38: 341-347.]
[71] Strozzi T, Kouraev A, Wiesmann A, et al. Estimation of Arctic glacier motion with satellite L-band[J]. Remote Sensing of Environment, 2008, 112: 636-645.
[72] Huang L, Li Z. Comparision of SAR and optical data in deriving glacier velocity with feature tracking[J]. International Journal of Remote Sensing, 2011, 32: 2 681-2 698.
[73] Strozzi T, Luckman A, Murray T. Glacier motion estimation using SAR offset-tracking procedures[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40: 2 384-2 391.
[74] Kääb A, Huggel C, Fischer L, et al. Remote sensing of glacier- and permafrost-related hazards in high mountains: An overview[J]. Natural Hazards and Earth System Sciences, 2005, 5: 527-554.
[75] Giles B, Massom A, Warner C. A method for sub-pixel scale feature-tracking using Radarsat images applied to the Mertz Glacier Tongue, East Antarctica[J]. Remote Sensing of Environment, 2009, 113: 1 691-1 699.
[76] Lange R, Luckman A, Murray T. Improvement of satellite radar feature tracking for ice velocity derivation by spatial frequency filtering[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45: 2 309-2 318.
[77] Luckman A, Quincey D, Bevan S. The potential of satellite radar interferometry and feature tracking for monitoring flow rates of Himalayan glaciers[J]. Remote Sensing of Environment, 2007, 111: 172-181.
[78] Zhou J, Li Z, Guo W. Estimation and analysis of the surface velocity field of mountain glaciers in the Muztag Ata using satellite SAR data[J]. Environmental Earth Science, 2014, 71: 3 581-3 592.
[79] Joughin R, Kwok R, Fahnestock M. Interferometric estimation of three-dimensional ice-flow ascending and descending passes[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36:25-37.
[80] Gudmundsson S, Gudmundsson T, Björnsson H, et al. Three-dimensional glacier surface motion maps at the Gjálp eruption site, Iceland, inferred from combing InSAR and other ice-displacement data[J]. Annals of Glaciology, 2002, 34: 315-322.
[81] Wang Yiting, Chen Xiuwan, Bo Yanchen, et al. Monitoring glacier volume change based on multi-source DEM and multi-temporal remote sensing images[J]. Journal of Glaciology and Geocryology, 2010, 32:126-132.[王袆婷,陈秀万,柏延臣,等. 多源DEM和多时相遥感影像监测冰川体积变化——以青藏高原那木错尼峰地区为例[J]. 冰川冻土,2010, 32: 126-132.]
[82] Li Z, Xing Q, Liu S, et al. Monitoring thickness and volume changes of the Dongkemadi ice field on the Qinghai-Tibetan Plateau (1969-2000) using Shuttle Radar Topography Mission and map data[J]. International of Digital Earth, 2011, 52:1-17.
[83] Joughin I. Estimation of Ice-sheet Topography and Motion Using Interferometric Synthetic Aperture Radar[D]. Washington: University of Washington, 1995.
[84] Joughin I, Tulaczyk S, Fahnestock M, et al. A mini-surge on the Ryder Glacier, Greenland, observed by satellite radar interferometry[J]. Science, 1996, 274: 228-230.
[85] Eldhuset K, Andersen H, Hauge S, et al. ERS tandem InSAR processing for DEM generation, glacier motion estimation and coherence analysis on Svalbard[J]. International Journal of Remote Sensing, 2003, 24:1 415-1 437.
[86] Zhou Chunxia, E Dongchen, Liao Mingsheng. Feasibility of InSAR applications to Antarctic mapping[J]. Geomatics and Information Science of Wuhan University,2004, 29: 619-623. [周春霞,鄂栋臣,廖明生. InSAR用于南极测图的可行性研究[J]. 武汉大学学报:信息科学版, 2004, 29: 619-623.]
[87] Rao S, Venkataraman G, Rao S, et al. SAR interferometry for DEM generation and movement of Indian glaciers[C]∥IGASRSS.Alaska: IEEE Press, 2004,2:1 128-1 131.
[88] Rodríguez E, Morris S, Belz E. A global assessment of the SRTM performance[J]. Photogrammetric Engineering & Remote Sensing, 2006, 72: 249-260.
[89] Huang X, Xie H, Liang T, et al. Estimating vertical error of SRTM and map-based DEMs using ICESat altimetry data in the eastern Tibetan Plateau[J]. International Journal of Remote Sensing, 2011, 32:5 177-5 196.
[90] Zhou J, Li Z, He X, et al. Glacier thickness change mapping using InSAR methodology[J]. IEEE Transactions on Geoscience and Remote Sensing Letters, 2014, 11: 44-48.
[91] Rignot E, Kanagaratnam P. Changes in the velocity structure of the Greenland ice sheet[J]. Science, 2006, 311: 986-990.
[92] Sheng Y, Alsdorf E. Automated georeferencing and orthorectification of Amazon Basin-wide SAR mosaics using SRTM DEM data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43: 1 929-1 940.
[93] Sharma J, Hajnsek I, Papathanassiou P, et al. Estimation of glacier ice extinction using long-wavelength airborne Pon-InSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51: 3 715-3 732.
[94] Rott H, Nagler T, Malcher P, et al. Modelling mass balance of glaciers using satellite data[C]∥Proceeding of Envisat Symposium. Switzerland,2007.
[1] 王忠静,石羽佳,张腾. TRMM遥感降水低估还是高估中国大陆地区的降水?[J]. 地球科学进展, 2021, 36(6): 604-615.
[2] 顾菊, 张勇, 刘时银, 王欣. 青藏高原冰川底部滑动估算方法研究: 进展、问题与展望[J]. 地球科学进展, 2021, 36(3): 307-316.
[3] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[4] 吴佳梅,彭秋志,黄义忠,黄亮. 中国植被覆盖变化研究遥感数据源及研究区域时空热度分析[J]. 地球科学进展, 2020, 35(9): 978-989.
[5] 董治宝,吕萍,李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[6] 刘元波, 吴桂平, 赵晓松, 范兴旺, 潘鑫, 甘国靖, 刘永伟, 郭瑞芳, 周晗, 王颖, 王若男, 崔逸凡. 流域水文遥感的科学问题与挑战[J]. 地球科学进展, 2020, 35(5): 488-496.
[7] 刘磊,翁陈思,李书磊,胡帅,叶进,窦芳丽,商建. 太赫兹波被动遥感冰云研究现状及进展[J]. 地球科学进展, 2020, 35(12): 1211-1221.
[8] 李浩杰,李弘毅,王建,郝晓华. 河冰遥感监测研究进展[J]. 地球科学进展, 2020, 35(10): 1041-1051.
[9] WangJingfeng,刘元波,张珂. 最大熵增地表蒸散模型:原理及应用综述[J]. 地球科学进展, 2019, 34(6): 596-605.
[10] 陈泽青,刘诚,胡启后,洪茜茜,刘浩然,邢成志,苏文静. 大气成分的遥感监测方法与应用[J]. 地球科学进展, 2019, 34(3): 255-264.
[11] 冉有华,李新. 中国多年冻土制图:进展、挑战与机遇[J]. 地球科学进展, 2019, 34(10): 1015-1027.
[12] 肖雄新, 张廷军. 基于被动微波遥感的积雪深度和雪水当量反演研究进展[J]. 地球科学进展, 2018, 33(6): 590-605.
[13] 栾海军, 田庆久, 章欣欣, 聂芹, 朱晓玲. 定量遥感地表参数尺度转换研究趋势探讨[J]. 地球科学进展, 2018, 33(5): 483-492.
[14] 宋晓谕, 高峻, 李新, 李巍岳, 张中浩, 王亮绪, 付晶, 黄春林, 高峰. 遥感与网络数据支撑的城市可持续性评价:进展与前瞻[J]. 地球科学进展, 2018, 33(10): 1075-1083.
[15] 王建, 车涛, 李震, 李弘毅, 郝晓华, 郑照军, 肖鹏峰, 李晓峰, 黄晓东, 钟歆玥, 戴礼云, 李红星, 柯长青, 李兰海. 中国积雪特性及分布调查[J]. 地球科学进展, 2018, 33(1): 12-15.
阅读次数
全文


摘要