地球科学进展 ›› 2014, Vol. 29 ›› Issue (7): 835 -843. doi: 10.11867/j.issn.1001-8166.2014.07.0835

研究论文 上一篇    下一篇

长江河水 87Sr/ 86Sr值的季节性变化及其指示意义:以长江大通站为例 1
罗超 1, 郑洪波 2, *, 吴卫华 1, 杨守业 3   
  1. 1. 南京大学表生地球化学教育部重点实验室,南京大学地球科学与工程学院,江苏 南京 210023; 2. 南京师范大学地理科学学院,江苏 南京210023; 3. 同济大学海洋地质国家重点实验室,长江水环境教育部重点实验室, 上海,200092
  • 出版日期:2014-07-10
  • 通讯作者: 郑洪波(1965-),男,山东乳山人,教授,主要从事第四纪地质与过去全球变化研究. E-mail:zhenghb@njnu.edu.cn
  • 基金资助:

    中国科学院战略性先导科技专项(B类)“青藏高原多层圈相互作用及其资源环境效应”(编号:XDB03020300); 中国地质调查局项目“中国矿物碳汇试验研究”(编号:12120113005400)资助

Temporal Variation in Sr and 87Sr/ 86Sr of Yangtze River: An Example from Datong Hydrological Station

Luo Chao 1, Zheng Hongbo 2, Wu Weihua 1, Yang Shouye 3   

  1. 1. Key Laboratory of Surficial Geochemistry, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China; 2. School of Geography Science, Nanjing Normal University, Nanjing 210023, China; 3. State Key Laboratory of Marine Geology, Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
  • Online:2014-07-10 Published:2014-07-10

在长江下游大通水文站进行了为期1年的每2周1次的水样采样,分析测试其Sr含量及其同位素组成。结果表明,长江溶解Sr浓度在1.74~2.92 μmol/L之间变化,87Sr/86Sr值的范围为0.710125~ 0.710965,河水Sr含量及同位素组成出现明显的季节性差异,表现为从洪水季节开始87Sr/86Sr值逐步升高,至12月达到最高值后缓慢下降并在下一个洪水季节到来时升高。研究认为,下游河水87Sr/86Sr值的季节性变化主要受流域降雨的时空变化所导致的物源相对贡献比例变化控制。受季风气候影响,当洪水期短期强降雨集中在上游地区时,强烈的风化使得上游贡献增多,致使下游河水Sr同位素组成迅速降低。采样期间(2011年1~5月)中下游的持久干旱致使中下游硅酸盐岩风化对河水Sr贡献减少从而造成河水同位素组成持续降低。同时,基于全年样品数据计算得出长江溶解Sr同位素组成的入海特征值为0.710628,Sr通量为1.9×109mol/a。研究结果表明河水Sr同位素组对流域极端气候的响应较好,可为今后使用历史时期物质Sr同位素研究解释极端气候变化奠定基础。

Temporal variation of dissolved 87Sr/86Sr in the Yangtze River is poorly understood compared to other Tibetan rivers. In this study, dissolved Sr and 87Sr/86Sr were measured from a temporal series of water samples collected biweekly at Datong Hydrological Station over a period of one year. Our results show that Sr concentration in the Yangtze River ranges from 1.74 to 2.92 μmol/L with 87Sr/86Sr of 0.710125 to 0.710965. The Sr concentration and 87Sr/86Sr shows a distinct seasonal variation, with a general increase in 87Sr/86Sr ratios from summer to winter and some fluctuations during July and December, then followed by a gradually decrease till the next rainy season. The seasonal variation results from the variation of contributions from different sub-basin due to the spatially and seasonally variable rainfall across the basin. During the flood season, more contribution from upper reach (low 87Sr/86Sr values) due to the strong rainfall decreases the 87Sr/86Sr ratio at lower reach. While the severe drought which happened in the middle-lower reaches (high 87Sr/86Sr values) from January to May explains the decrease in the later part of the data by the decrease of the contribution from middle-lower reaches. The discharge weighted annual 87Sr/86Sr and annual Sr flux of the Yangtze River based on the time series data are 0.710628 and 1.9×109 mol/a, respectively. It was also indicated that dissolved 87Sr/86Sr in the Yangtze River is well correlated to the extreme climate events and might contribute to our explanation for reconstructing past climatic changes by using 87Sr/86Sr ratios of the sedimentary record in the delta .

中图分类号: 

[1] M E, Ruddiman W F, Froelich P N. Cenezoic mountain building on ocean geochemical cycles[J]. Geology, 1988, 16(7): 649-653.
[2] F M, Rowley D B, DePaolo D J. Sr isotope evolution of seawater: The role of tectonics[J]. Earth and Planetary Science Letters, 1992, 109(1/2): 11-23.
[3] M R, Edmond J M. The strontium isotope budget of the mordern ocean[J]. Earth and Planetary Science Letters, 1989, 92(1): 11-26.
[4] S, Singh S K. Silicate and carbonate weathering in the drainage basins of the Ganga-Ghaghara-Indus head waters: Contributions to major ion and Sr isotope geochemistry[J]. Earth and Planetary Science Letters, 1998, 107(4): 283-291.
[5] A D, Walter L M. Reconciling the elemental and Sr isotope composition of Himalayan weathering fluxes: Insights from the carbonate geochemistry of stream waters[J]. Geochimica et Cosmochimica Acta, 2002, 66 (19): 3 417-3 429.
[6] S, Trivedi J R, Sarin M M, et al. Strontium isotopes and rubidium in the Ganga-Brahmaputra River system: Weathering in the Himalaya, fluxes to the bay of Bengal and contributions to the evolution of oceanic 87 Sr/ 86 Sr[J]. Earth and Planetary Science Letters, 1992, 109(1/2): 243-253.
[7] T K, Krishnaswami S, Kumar A. Sr and Sr-87/Sr-86 in the Yamuna River system in the Himalaya: Sources, fluxes, and controls on Sr isotope composition[J].Geochimica et Cosmochimica Acta, 2003, 67(16): 2 931-2 948.
[8] Jianhua, Ran Jing, Shen Ganfu, et al. The current situation and advance of research on the source rock for the strontium isotope in the Himalayan Rivers[J]. Advances in Earth Science, 2006, 21(3):262-268.[秦建华,冉敬,沈敢富,等. 喜马拉雅河流Sr同位素异常源岩研究现状及研究进展[J]. 地球科学进展, 2006, 21(3):262-268.]
[9] Xiang, Qian Weihong. Review of the global monsoon and monsoon marginal zones[J]. Advances in Earth Science,2012, 27(1):26-34.[林祥,钱维宏. 全球季风和季风边缘研究[J]. 地球科学进展, 2012, 27(1):26-34.]
[10] C P, Chen J, Yuan X Y, et al. Seasonal variation in the mineralogy of the suspended particulate matter of the lower Changjiang River at Nanjing, China[J]. Clays and Clay Minerals, 2010, 58(5): 691-706.
[11] J. Heavy metal compositions of suspended sediments in the Changjiang (Yangtze River) Estuary: Significance of riverine transport to the ocean[J]. Continental Shelf Research, 1999, 19(12): 1 521-1 543.
[12] M J, Bunbury J, Chapman H J, et al. Fluxes of Sr into the headwaters of the Ganges[J]. Geochimica et Cosmochimica Acta, 2003, 67(14): 2 567-2 584.
[13] G R, Goswami V, Singh S K, et al. Temporal variations in Sr and 87 Sr/ 86 Sr of the Ganga headwaters: Estimates of dissolved Sr flux to the mainstream[J]. Hydrological Processes, 2010, 24 (9): 1 159-1 171.
[14] S K, Singh S K. Temporal variation in Sr and 87 Sr/ 86 Sr of the Brahmaputra: Implications for annual fluxes and tracking flash floods through chemical and isotope composition[J]. Geochemistry Geophysics Geosystems, 2007, 8(8), doi: 10.1029/2007GC001610.
[15] G R, Singh S K. Chemical erosion rates of river basins of the Ganga system in the Himalaya: Reanalysis based on inversion of dissolved major ions, Sr, and 87 Sr/ 86 Sr[J]. Geochemistry Geophysics Geosystems, 2010, 11(3), doi: 10.1029/2009GC002862.
[16] G J, Ma J L, Liu Y, et al. Seasonal changes in the radiogenic and stable strontium isotopic composition of Xijiang River water: Implications for chemical weathering[J]. Chemical Geology, 2013, 343:67-75.
[17] Z, Zhang J, Liu C. Strontium isotopic compositions of dissolved and suspended loads from the main channel of the Yangtze River[J]. Chemosphere, 2007, 69(7): 1 081-1 088.
[18] B, Liu C Q, Zhao Z Q, et al. Geochemistry of the dissolved load of the Changjiang Basin rivers: Anthropogenic impacts and chemical weathering[J]. Geochimica et Cosmochimica Acta, 2008, 72(17): 4 254-4 277.
[19] S, Zhao Q, Belkin I M. Temporal variation in the sediment load of the Yangtze River and the influences of human activities[J]. Journal of Hydrology, 2002, 263(1/4): 56-71.
[20] C P, Chen J, Yuan X Y, et al. Seasonal variations in the Sr-Nd isotopic compositions of suspended particulate matter in the lower Changjiang River: Provenance and erosion constraints[J]. Chinese Science Bulletin, 2011, 56(22): 2 371-2 378.
[21] Q, Zhang J, Wu Y, et al. Hydrochemical processes controlling arsenic and selenium in the Changjiang River (Yangtze River) system[J]. Science of the Total Environment, 2007, 377(1): 93-104.
[22] X X, Li S, He M, et al. Seasonal changes of nutrient fluxes in the Upper Changjiang Basin: An example of the Longchuanjiang River, China[J]. Journal of Hydrology, 2011, 405(3/4):344-351.
[23] S, Liang T, Zhang S, et al. Seasonal changes in nitrogen and phosphorus transport in the lower Changjiang River before the construction of the Three Gorges Dam[J]. Estuarine, Coastal and Shelf Science, 2008, 79(2): 239-250.
[24] Jun, Li Jianyong, Zhou Xinchun, et al. Analysis on storm-flood in Yangtze River in 2010 and influence of storage and discharge of Three Gorges Reservoir[J]. Yangtze River, 2011, 42(6): 1-5.[王俊,李键庸,周新春,等. 2010年长江暴雨洪水及三峡水库蓄泄影响分析[J]. 人民长江, 2011, 42(6): 1-5.]
[25] Xinchun, Yang Wenfa. Preliminary analysis of storm-flood in Yangtze River Basin in 2010[J]. Yangtze River,2011, 42(6): 6-10.[周新春,杨文发. 2010年长江流域暴雨洪水初步分析[J]. 人民长江, 2011, 42(6): 6-10.]
[26] Li, Li Chunlong, Zhang Fangwei. Rainstorm forecasting of Poyang Lake and Dongting Lake area in June,2010 and meteorlogical genesis analysis[J]. Yangtze River,2011, 42(6): 32-34.[訾丽,李春龙,张方伟. 2010年6月两湖水系暴雨预报与天气成因分析[J]. 人民长江, 2011, 42(6): 32-34.]
[27] Qiying. Analysis of the posssible causes of drought in the middle-lower reaches of the Yangzte River in the early 2011[J]. Journal of Green Science and Technology, 2012, (8):102-105.[孙齐颖. 2011年初长江中下游地区干旱的可能成因分析[J]. 绿色科技, 2012, (8):102-105.]
[28] Geological Survey.1∶2500000 Geology Map[M]. Beijing: China SinoMaps Press, 2004.[中国地质调查局. 1∶ 2500000数字地质图[M]. 北京: 中国地图出版社, 2004.]
[29] T, Wan D, Wang C, et al. Silicon isotope compositions of dissolved silicon and suspended matter in the Yangtze River, China[J]. Geochimica et Cosmochimica Acta, 2004, 68(2): 205-216.
[30] Z Y, Li J F, Shen H T, et al. Yangtze River of China: Historical analysis of discharge variability and sediment flux[J]. Geomorphology, 2001, 41(2/3): 77-91.
[31] Qiuming, Song Juan, Li Yi, et al. Review of impacts of the global atmospheric intraseasonal oscillation on the continuous heavy rainfall over Yangtze River valley[J]. Advances in Earth Science, 2012, 27(8):876-884.[杨秋明,宋娟,李熠,等.全球大气季节内振荡对长江流域持续暴雨影响的研究进展[J]. 地球科学进展, 2012, 27(8): 876-884].
[32] Huying,Kuang Yiyu,Zi Li. Genesis of 2010 storm-flood in Yangtze River Basin and its comparison with 1998 flood[J]. Yangtze River, 2011, 42(6): 11-14.[沈浒英,匡奕煜,訾丽. 2010年长江暴雨洪水成因及与1998年洪水比较[J]. 人民长江, 2011, 42(6): 11-14.]
[33] Water Resource Commission, Ministry of Water Resources (CWRC). Floods and Droughts in the Yangtze River Catchment[M]. Beijing: Water Conservancy and Water Electricity Publication House, 2002.[水利部长江水利委员会. 长江流域水旱灾害[M]. 北京: 中国水利水电出版社,2002.]
[34] S Y, Wang Z B, Guo Y, et al. Heavy mineral compositions of the Changjiang (Yangtze River) sediments and their provenance-tracing implication[J]. Journal of Asian Earth Sciences, 2009, 35(1): 56-65.
[35] B, Liu C Q, Zhao Z Q, et al. Geochemistry of the dissolved load of the Changjiang Basin rivers: Anthropogenic impacts and chemical weathering[J]. Geochimica et Cosmochimica Acta, 2008, 72(17): 4 254-4 277.
[36] Guolin,Yang Hanyou,Zhang Shixuan,et al. A preliminary research on the reason of a sharp turn from drought to flood in the middle and lower reaches of the Yangtze River in late spring and early summer of 2011[J]. Atmospheric Sciences, 2012, 36(5): 1 009-1 026.[封国林,杨涵洧,张世轩,等. 2011年春末夏初长江中下游地区旱涝急转成因初探[J]. 大气科学, 2012, 36(5): 1 009-1 026.]
[37] J, Dupré B, Louvat P, et al. Global silicate weathering and CO 2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1/4): 3-30.
[38] D A, Mead G A, Mueller P A. Variation in the strontium isotopic composition of seawater (8 Ma to present) : Implications for chemical weathering rates and dissolved fluxes to the oceans[J]. Chemical Geology: Isotope Geoscience Section, 1990, 80(4): 291-307.
[39] W H, Yang J D, Xu S J, et al. Sr fluxes and isotopic compositions of the eleven rivers originating from the Qinghai-Tibet Plateau and their contributions to 87 Sr/ 86 Sr evolution of seawater[J]. Science in China(Series D), 2009, 52(8): 1 059-1 067.
[40] A C, Bickle M J, Teagle D. Imbalance in the oceanic strontium budget[J]. Earth and Planetary Science Letters, 2003, 211(1/2): 173-187.
[1] 许苗苗, 魏晓椿, 杨蓉, 王平, 程晓敢. 重矿物分析物源示踪方法研究进展[J]. 地球科学进展, 2021, 36(2): 154-171.
[2] 夏军, 陈进, 王纲胜, 程丹东. 2020年长江上游洪水看流域防洪对策[J]. 地球科学进展, 2021, 36(1): 1-8.
[3] 王军,江琴. 长江经济带多灾种综合风险评价与防范的思考[J]. 地球科学进展, 2020, 35(8): 816-825.
[4] 常海钦,付亚龙,林鑫,张苗苗,孟刚刚. 流域盆地化学风化强度空间分布及控制因素研究:以长江和珠江为例[J]. 地球科学进展, 2019, 34(1): 93-102.
[5] 顾家伟. 长江河口区晚新生代以来沉积化学元素分布及物源指示意义[J]. 地球科学进展, 2018, 33(5): 506-516.
[6] 杨秋明. 长江下游夏季低频温度和高温天气的延伸期预报研究[J]. 地球科学进展, 2018, 33(4): 385-395.
[7] 张硕, 简星, 张巍. 碎屑磷灰石对沉积物源判别的指示 *[J]. 地球科学进展, 2018, 33(11): 1142-1153.
[8] 唐志敏, 侯青叶, 游远航, 杨忠芳, 李括. 珠三角平原区第四系剖面重金属分布特征及其影响因素[J]. 地球科学进展, 2017, 32(8): 885-898.
[9] 陶亚玲, 常宏. 长江第一湾附近构造作用下的河流地貌演化[J]. 地球科学进展, 2017, 32(5): 488-501.
[10] 魏传义, 刘春茹, 李长安, 尹功明, 李文朋, 赵举兴, 张增杰, 张岱, 孙习林, 李亚伟. 石英ESR法物源示踪:认识与进展[J]. 地球科学进展, 2017, 32(10): 1062-1071.
[11] 吴伊婧, 范代读, 印萍, 胡虞杨. 近岸底层水体低氧沉积记录研究进展[J]. 地球科学进展, 2016, 31(6): 567-580.
[12] 姚蓬娟, 王春乙, 张继权. 长江中下游地区双季早稻冷害、热害危险性评价[J]. 地球科学进展, 2016, 31(5): 503-514.
[13] 王文, 孙畅, 蔡晓军, 许金萍. 南亚高压低频振荡与长江中下游地区旱涝的关系[J]. 地球科学进展, 2016, 31(5): 529-541.
[14] 刘华华, 蒋富清, 周烨, 李安春. 晚更新世以来奄美三角盆地黏土矿物的来源及其对古气候的指示[J]. 地球科学进展, 2016, 31(3): 286-297.
[15] 林春明, 张霞, 徐振宇, 邓程文, 殷勇, 承秋泉. 长江三角洲晚第四纪地层沉积特征与生物气成藏条件分析[J]. 地球科学进展, 2015, 30(5): 589-601.
阅读次数
全文


摘要