地球科学进展 ›› 2014, Vol. 29 ›› Issue (7): 828 -834. doi: 10.11867/j.issn.1001-8166.2014.07.0828

上一篇    下一篇

地壳结构对GRACE估算中国大陆地表垂直负荷形变的影响 *
贾路路 1, 2( ), 相龙伟 2, 3, 汪汉胜 2   
  1. 1.地壳运动监测工程研究中心,北京 100036
    2.中国科学院测量与地球物理研究所大地测量与地球动力学国家重点实验室,湖北武汉 430077
    3.中国科学院大学,北京 100049
  • 出版日期:2014-07-10
  • 基金资助:
    国家自然科学基金项目“联合GRACE和卫星测高分离南极GIA和冰质量平衡的研究”(编号:41204013);地壳工程中心主任基金项目(2013)“联合卫星重力和GPS研究中国大陆地表质量驱动的周年垂直形变”资助

Effects of Crustal Structure for Estimation of Vertical Load Deformation on the Solid Earth Using GRACE in China Mainland

Lulu Jia 1, 2( ), Longwei Xiang 2, 3, Hansheng Wang 2   

  1. 1. National Earthquake Infrastructure Service, Beijing 100036, China
    2. State Key Laboratory of Geodesy and Earth’s Dynamics, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China
    3. University of Chinese Academy of Sciences, Beijing 100049, China
  • Online:2014-07-10 Published:2014-07-10

根据重力卫星GRACE(Gravity Recovery and Climate Experiment)估算固体地表垂直负荷形变时通常采用的PREM (Preliminary Reference Earth Model) 地球模型不能较好地反映中国大陆特别是青藏高原巨厚的地壳结构。基于考虑中国大陆区域地壳结构的地球模型计算了新的负荷勒夫数,探讨了地壳结构差异对GRACE卫星RL05观测数据估算中国大陆地表垂直负荷形变的影响。结果表明,区域地壳结构差异对GRACE估算中国大陆地表负荷形变的影响较为明显,90阶垂直位移负荷勒夫数的相对差异接近11%;前90阶垂直负荷形变差异的极值出现在青藏高原东南部,最大相对差异达到10%左右,均方根相对差异为4%。建议利用GRACE卫星RL05数据估算中国大陆地表垂直负荷形变时,应该使用更加趋于真实的区域地壳结构替代PREM模型的相应部分。

When the inversion of vertical load deformation on Earth’s surface using GRACE (Gravity Recovery and Climate Experiment) data, the load Love numbers based on PREM (Preliminary Reference Earth Model) are commonly used. But the crustal structure under China mainland especially under Tibet Plateau is quite different from that given by PREM Earth model. New load Love numbers were calculated based on a modified Earth model which accounted for regional crustal structure in China mainland. And the effect of regional crustal structure in China mainland for estimation of vertical load deformation on Earth’s surface using GRACE RL05 data was investigated in this paper. It is found that the effect of crustal difference is very prominent. The relative difference of load Love numbers for vertical deformation can reach about 11% at degree 90. The extreme value of difference in vertical load deformation below 90 degree of spherical harmonic coefficients located at the southeastern Tibet Plateau and the maximum relative difference reaches 10%. The relative difference of the root mean square is about 4%. It is suggesting that an Earth model with a more realistic crustal structue instead of PREM should be used for the estimation of vertical load deformation in China mainland espacially in Tibet Plateau.

中图分类号: 

图1 M-PREM和PREM地球模型参数差异
Fig.1 The difference of parameters from M-PREM and PREM
图2 (a)基于M-PREM和PREM地球模型的负荷勒夫数及(b)相对差异
Fig.2 (a) Values of load Love numbers based on M-PREM and PREM earth model and (b) the relative difference
图3 (a)基于M-PREM和PREM地球模型的因子 B l值及(b)相对差异
Fig.3 (a) Values of B l based on M-PREM and PREM Earth model and (b) the relative difference
图4 基于M-PREM模型的垂直负荷形变线性趋势
Fig.4 Linear trend of vertical load deformation based on M-PREM
图5 不同地壳结构估算垂直负荷形变的差异
Fig.5 Difference of inversion of vertical load deformation based on different crustal structure
[1] Davis J, Elósegui P, Mitrovica J, et al. Climate-driven deformation of the solid Earth from GRACE and GPS[J]. Geophysical Research Letters, 2004, 31(24): L24605, doi: 10.1029/2004GL021435.
[2] Wahr J, Dam T, Larson K, et al. Geodetic measurements in Greenland and their implications[J]. Journal of Geophysical Research, 2001, 106(B8): 16567-16581.
[3] Nielsen K, Khan S A, Spada G, et al. Vertical and horizontal surface displacements near Jakobshavn Isbrea driven by melt-induced and dynamic ice loss[J]. Journal of Geophysical Research, 2013, 118(4): 1837-1844.
[4] Tapley B D, Bettadpur S, Ries J C, et al. GRACE measurements of mass variability in the Earth system[J]. Science, 2004, 305(5683): 503-505.
[5] Tapley B D, Bettadpur S, Watkins M, et al. The gravity recovery and climate experiment: Mission overview and early results[J]. Geophysical Research Letters, 2004, 31(9): L09607, doi: 10.1029/2004GL019920.
[6] Wang Hansheng, Wang Zhiyong, Yuan Xudong. Water storage changes in Three Gorges water systems area inferred from GRACE time-variable gravity data[J]. Chinese Journal of Geophysics, 2007, 50(3): 730-736.
[汪汉胜, 王志勇, 袁旭东. 基于GRACE 时变重力场的三峡水库补给水系水储量变化[J]. 地球物理学报, 2007, 50(3): 730-736.]
[7] Wahr J, Swenson S, Zlotnicki V, et al. Time-variable gravity from GRACE: First results[J]. Geophysical Research Letters, 2004, 31(11): L11501,doi: 10.1029/2004GL019779.
[8] Jia Lulu, Wang Hansheng, Xiang Longwei, et al. Effects of glacial isostatic adjustment on the estimation of ice mass balance over Antarctica and the uncertainties[J].Chinese Journal Geophysics, 2011, 54(6): 1466-1477.
[贾路路, 汪汉胜, 相龙伟, 等. 冰川均衡调整对南极冰质量平衡监测的影响及其不确定性[J]. 地球物理学报, 2011, 54(6): 1 466-1 477.]
[9] King M A, Bingham R J, Moore P, et al. Lower satellite-gravimetry estimates of Antarctic sea-level contribution[J]. Nature, 2012, 491(7425): 586-589.
[10] Ivins E R, James T S, Wahr J, et al. Antarctic contribution to sea level rise observed by GRACE with improved GIA correction[J]. Journal of Geophysical Research, 2013, 118(6): 3126-3141.
[11] Farrell W. Deformation of the Earth by surface loads[J]. Reviews of Geophysics and Space Physics, 1972, 10(3): 761-797.
[12] Liao Haihua, Zhong Min, Zhou Xuhua. Climate-driven annual vertical deformation of solid Earth calculated from GRACE[J]. Chinese Journal of Geophysics, 2010, 53(5): 1091-1098.
[廖海华, 钟敏, 周旭华. 利用 GRACE 卫星重力资料解算气候驱动的地表周年垂直形变[J]. 地球物理学报, 2010, 53(5): 1091-1098.]
[13] Fu Y, Freymueller J T. Seasonal and long-term vertical deformation in the Nepal Himalaya constrained by GPS and GRACE measurements[J]. Journal of Geophysical Research, 2012, 117(B3): B03407, doi:10.1029/2011JB008925.
[14] Kusche J, Schrama E. Surface mass redistribution inversion from global GPS deformation and Gravity Recovery and Climate Experiment (GRACE) gravity data[J]. Journal of Geophysical Research, 2005, 110(B9): B09409, doi: 10.1029/2004JB003556.
[15] Zhang Liangjing, Jin Shuanggen, Zhang Tengyu. Seasonal variations of Earth’s surface deformation estimated from GPS and satellite gravimetry[J]. Journal of Geodesy and Geodynamics, 2012, 32(2): 32-38.
[张良镜, 金双根, 张腾宇. 用GPS和卫星重力观测估计地表形变的季节性变化[J]. 大地测量与地球动力学, 2012, 32(2): 32-38.]
[16] Dziewonski A M, Anderson D L. Preliminary reference Earth model[J]. Physics of the Earth and Planetary Interiors, 1981, 25(4): 297-356.
[17] Wang Hansheng, Xu Houze, Li Guoying. Improvement of computation of load Love numbers of SNREI Earth model[J]. Chinese Journal Geophysics, 1996, 39(Suppl.): 182-189.
[汪汉胜, 许厚泽, 李国营. SNREI地球模型负荷勒夫数数值计算的新进展[J]. 地球物理学报, 1996, 39(增刊): 182-189.]
[18] Wang H, Xiang L, Wu P, et al. Effects of the Tibetan Plateau crustal structure on the inversion of water trend rates using simulated GRACE/GPS data[J]. Terrestrial, Atmospheric & Oceanic Sciences, 2013, 24(4): 505-512.
[19] Laske G, Masters G, Reif C. CRUST 2.0: A New Global Crustal Model at 2×2 Degrees[DB/OL]. 2011[2014-02-17]..
URL    
[20] Wang H, Xiang L, Jia L, et al. Load love numbers and Green’s functions for elastic Earth models PREM, iasp91, ak135, and modified models with refined crustal structure from Crust 2.0[J]. Computer & Geoscience, 2012, 49: 190-199.
[21] Ju Xiaolei, Shen Yunzhong, Zhang Zizhan. Antarctica ice mass change analysis based on GRACE RL05 data[J]. Chinese Journal of Geophysics, 2013, 56(9): 2918-2927.
[鞠晓蕾, 沈云中, 张子占. 基于GRACE卫星RL05数据的南极冰盖质量变化分析[J]. 地球物理学报, 2013, 56(9): 2918-2927.]
[22] Chambers D P. Observing seasonal steric sea level variations with GRACE and satellite altimetry[J]. Journal of Geophysical Research, 2006, 111(C3): C03010, doi: 10.1029/2005JC002914.
[23] Steffen H, Wu P, Wang H. Determination of the Earth’s structure in Fennoscandia from GRACE and implications on the optimal post-processing of GRACE data[J]. Geophysical Journal International, 2010, 182(3): 1295-1310.
[24] Wahr J, Molenaar M. Time variability of the Earth’s gravity field:Hydrological and oceanic effects and their possible detection using GRACE[J]. Journal of Geophysical Research, 1998, 103(B12): 30205-30229.
[25] Jia Lulu. Effects of Glacial Isostatic Adjustment on the Estimate of Present-Day Mass Balance on the Earth’s Surface[D]. Beijing: University of Chinese Academy of Sciences, 2012.
[贾路路. 冰川均衡调整对现今地表质量平衡监测影响的研究[D]. 北京: 中国科学院大学, 2012.]
[26] Liu Yang, Wei Zhigang. Comparison of the precipitation cycle and trend in different areas of Northern China in recent 50 years[J]. Advances in Earth Science, 2012, 27(3): 337-346.
[刘扬, 韦志刚.近50年中国北方不同地区降水周期趋势的比较分析[J].地球科学进展,2012,27(3):337-346.]
[27] Tang Q, Zhang X, Tang Y. Anthropogenic impacts on mass change in North China[J]. Geophysical Research Letters, 2013, 40(15): 3924-3928.
[28] Meng Suhua, Fei Yuhong, Zhang Zhaoji, et al. Research on spatial and temporal distribution of the precipitation infiltration amount over the past 50 years in North China Plain[J]. Advances in Earth Science, 2013, 28(8): 923-929.
[孟素花, 费宇红, 张兆吉, 等. 50年来华北平原降水入渗补给量时空分布特征研究[J]. 地球科学进展, 2013, 28(8): 923-929.]
[29] Wang X, De Linage C, Famiglietti J, et al. Gravity Recovery and Climate Experiment (GRACE) detection of water storage changes in the Three Gorges Reservoir of China and comparison with in situ measurements[J]. Water Resources Research, 2011, 47(12): W12502, doi: 10.1029/2011WR010534.
[30] Wahr J, Swenson S, Velicogna I. Accuracy of GRACE mass estimates[J]. Geophysical Research Letters, 2006, 33(6): L06401, doi: 10.1029/2005GL025305.
[1] 房婷婷, 付广裕. 卫星重力与地球重力场的文献计量分析[J]. 地球科学进展, 2021, 36(5): 543-552.
[2] 孙和平,周江存,彭碧波. 确定卫星重力场中的海潮负荷影响问题[J]. 地球科学进展, 2006, 21(5): 482-486.
[3] 周国逸,黄志宏. 中国大陆面向生态的水资源管理与调控战略[J]. 地球科学进展, 2002, 17(3): 435-440.
[4] 刘化清,袁剑英,苏 醒,完颜容,魏东涛,沈光隆. 晚古生代中国大陆与欧美地区植物群之间的差异及其原因[J]. 地球科学进展, 1999, 14(3): 269-273.
阅读次数
全文


摘要