地球科学进展 ›› 2003, Vol. 18 ›› Issue (5): 697 -705. doi: 10.11867/j.issn.1001-8166.2003.05.0697

研究论文 上一篇    下一篇

极地海洋钻探研究进展
王汝建   
  1. 同济大学海洋地质教育部重点实验室,上海 200092
  • 收稿日期:2003-06-23 修回日期:2003-07-27 出版日期:2003-12-20
  • 通讯作者: 王汝建 E-mail:rjwangk@online.sh.cn
  • 基金资助:

    国家重点基础研究发展规划项目“地球圈层相互作用中的深海过程和深海纪录”(编号:G200078500);国家自然科学基金项目“白令海晚第四纪古海洋学记录及其对全球气候变化的响应”(编号:40276020);高等学校全国优秀博士学位论文作者专项“太平洋暖池在第四纪古海洋与古气候演变中的作用”(编号:200126)资助.

PROGRESS OF OCEAN DRILLING IN POLAR REGIONS

Wang Rujian   

  1. Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
  • Received:2003-06-23 Revised:2003-07-27 Online:2003-12-20 Published:2003-10-01

南极和北极海域的深海钻探(DSDP)和大洋钻探(ODP)研究所取得的成就是举世瞩目的,为人类研究过去全球变化打开了新的视野。它们揭示了北大西洋高纬度海区新近纪的古海洋学和古气候的演化历史,发现了早更新世"41ka世界"千年尺度的气候波动,以及冰期表层水温与深层水的耦合颤动,说明冰期旋回中冰消期气候的不稳定性。检验了新近纪环南极洋流的形成历史,并揭示了南极新生代的气候变冷和冰盖的演变历史,以及证实了南大洋温度变化领先于全球冰量的变化。2004年北极罗蒙诺索脊的综合大洋钻探(IODP)将宣告科学探索时代的到来,其研究将重建北冰洋新生代环境变化和气候的演变历史,展示北冰洋在全球气候变化中的作用。

Achievements made by Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) in the Antarctic and Arctic regions are the focus of world attention, opening a new insight for the past global change study. They reveal the paleoceanographic and paleoclimatic evolutionary history during the Neogene in the high latitude of the North Atlantic, find the millennial timescale climatic variability during the early Pleistocene “41 ka world” and couple the oscillation between surface temperature and deep water during the glacial periods, indicating the climatic instability of deglaciation during the glacial and interglacial cycles. They also test the formation history of the Antarctic Circumpolar Current, uncover the Cenozoic climate cooling and the evolutionary history of ice sheet in the Antarctic and confirm the “lead” of Southern Ocean temperature with respect to global ice volume, based on minimum planktonic δ18O values and increases in SST estimated by transfer functions lead the minimum in benthic δ18O by several thousand years at glacial terminations. The Arctic Lomonsov ridge which will be visited by the Integrated Ocean Drilling Program (IODP) in 2004 will declare in a new era of scientific exploration. The sediment study on the ridge will reconstruct the Cenozoic environmental change and climate evolutionary history in the Arctic and usher the role of the Arctic in global climate change.

中图分类号: 

[1] Jin Xingchun, Zhou Zuyi, Wang Pinxian. Ocean Drilling Program and Earth Science in China[M]. Shanghai: TongJi University Press, 1995.1-349.[金性春,周祖翼,汪品先.大洋钻探与中国地球科学[M].上海:同济大学出版社,1995.1-349.]

[2] Thiede J, Myhre A. Introduction to the North Atlantic-Arctic gateways: Plate tectonic-paleoceanographic history and significance[A]. In: Thiede J, Myhre A, Firth J, et al, eds. Proceedings of the Ocean Drilling Program, Scientific Results[C]. 1996, 151: 3-23.

[3] Thiede J, Myhre A. The paleoceanographic history of the North Atlantic-Arctic gateways: Synthesis of the Leg 151 drilling results[A]. In: Thiede J, Myhre A, Firth J, et al, eds. Proceedings of the Ocean Drilling Program, Scientific Results[C]. 1996, 151: 645-658.

[4] Raymo M. New insights into Earth’s history: An introduction to Leg 162 postcruise research published in Journals[A]. In: Raymo M, Jansen E, Blum P, et al, eds. Proceedings of the Ocean Drilling Program, Scientific Results[C]. 1999, 162: 273-275.

[5] Ortiz J, Mix A, Harris S, et al. Diffuse spectral reflectance as a proxy for percent carbonate content in North Atlantic sediments[J]. Paleoceanography, 1999, 14: 171-186.

[6] Oppo D, McManus J, Cullen J. Abrupt climate events 500 000 to 340 000 years ago: Evidence from subpolar North Atlantic sediments[J]. Science, 1998, 279: 1 335-1 338.

[7] McManus J, Oppo D, Cullen J. A 0.5 million year record of millennial-scale climate variability in the north Atlantic[J]. Science, 1999, 283: 971-975.

[8] McIntyre K, Ravelo A, Delaney M. North Atlantic intermediate waters in the Late Pliocene-Early Pleistocene[J]. Paleoceanography, 1999, 14: 324-335.

[9] Venz K, Hodell D, Stanton C, et al. A 1.0 Myr record of Glacial North Atlantic intermediate water variability from ODP Site 982 in the northeast Atlantic[J]. Paleoceanography, 1999,14: 42-52.

[10] Solheim A, Faleide J, Andersen E, et al. Late Cenozoic seismic stratigraphy and geological development of high latitude glacial continental margins: East Greenland and Svalbard-Barents Sea[J]. Quat Science Review, 1998, 17: 155-184.

[11] Larsen M, Fitton G, Saunders A. Composition of volcanic rocks from the Southeast Greenland margin, Leg 163: Major and trace element geochemistry[A]. In: Larsen H, Duncan R, Allan J, et al, eds. Proceedings of the Ocean Drilling Program, Scientific Results[C]. 1999, 163: 63-75.

[12] Larsen H, Saunders A. Tectonism and volcanism at the Southeast Greenland rifted margin: A record of plume impact and later continental rupture[A]. In: Saunders A, Larsen H, Wise S Jr, et al, eds. Proceedings of the Ocean Drilling Program, Scientific Results[C]. 1998, 152: 503-533.

[13] Thiede J, Eldholm O, Taylor E. Variability of Cenozoic Norwegian-Greenland Sea paleoceanography and northern hemisphere paleoclimate: Synthesis of paleoenvironmental studies of ODP Leg 104, Voring Plateau, Norwegian continental margin[A]. In: Eldholm O, Thiede J, Taylor E, et al, eds. Proceedings of the Ocean Drilling Program, Scientific Results[C]. 1989, 104: 1 067-1 118.

[14] Arthur M, Srivastava S, Kaminski M, et al. Seismic stratigraphy and history of deep circulation and sediment drift development in Baffin Bay and the Labrador Sea[A]. In: Srivastava S, Arthur M, Clement B, et al, eds. Proceedings of the Ocean Drilling Program, Scientific Results[C]. 1989, 105: 957-988.

[15] Johnson A. Arctic dreams[J]. JOI/USSAC, Newsletter, 2001, 14 (1): 1-3.

[16] Hovland M, Backman J, Coakley B, et al. The high-Arctic drilling challenge: Excerpts from final report of the Arctic’s role in global change program planning group (APPG) [J]. JOIDES Journal, 2001, 27 (1): 7-20.

[17] Exon N, Kennett J, Malone M, et al. Proceedings of ODP, Initial Reports, 2001, 189[M/CD]. Available from: Ocean Drilling Program, Texas A & M University, College Station TX 77845-9547, USA.

[18] O`Brien P, Cooper A, Richter C, et al. Proceedings of ODP, Initial Reports, 2001, 188[M/CD]. Available from: Ocean Drilling Program, Texas A & M University, College Station TX 77845-9547, USA.

[19] Wise S Jr, Breza J, Harwood D, et al. Paleogene glacial history of Antarctica in light of leg 120 drilling results[A]. In: Wise S Jr, Schlich R, et al, eds. Proceedings of the Ocean Drilling Program, Scientific Results[C]. 1992, 120: 1 001-1 029.

[20] Barron J, Larsen B, Baldauf J. Evidence for Late Eocene to Early Oligocene Antarctic glaciation and observations on Late Neogene glacial history of Antarctic: Results from Leg 119[A]. In: Barron J, Larsen B, et al, eds. Proceedings of the Ocean Drilling Program, Scientific Results[C]. 1991, 119: 869-891.

[21] Barker P, Camerlenghi A. Glacial history of the Antarctic Peninsula from Pacific margin sediments[A]. In:Barker P, Camerlenghi A, Acton A,et al, eds. Proceedings of the Ocean Drilling Program, Scientific Results[C]. 2003,178:1-40.

[22] Hodell D, Gersonde R, Blum P. Leg 177 synthesis: Insight into Southern Ocean paleoceanography on tectonic to millennial timescale[A]. In: Gersonde R, Hodell D, Blum P, et al, eds. Proceedings of the Ocean Drilling Program, Scientific Results[C]. 2003, 177: 1-54.

[23] Allen C, Warnke D. History of ice rafting at Leg 114 Sites, Subantarctic/South Atlantic[A]. In: Ciesielski P, Kristoffersen Y,et al, eds. Proceedings of the Ocean Drilling Program, Scientific Results[C]. 1991, 114: 599-607.

[24] Kennett J, Barker P. Latest Cretaceous to Cenozoic climate and oceanographic developments in the Weddell sea, Antarctica: An ocean-drilling perspective[A]. In: Barker P, Kennett J, et al, eds. Proceedings of the Ocean Drilling Program, Scientific Results[C]. 1990, 113: 937-960.

[1] 拓守廷,温廷宇,张钊,李阳阳. 大洋钻探计划运行的国际经验及对我国的启示[J]. 地球科学进展, 2021, 36(6): 632-642.
[2] 马鹏飞,刘志飞,拓守廷,蒋璟鑫,许艺炜,胡修棉. 国际大洋钻探科学数据的现状、特征及其汇编的科学意义[J]. 地球科学进展, 2021, 36(6): 643-662.
[3] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[4] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[5] 武丰民,李文铠,李伟. 北极放大效应原因的研究进展[J]. 地球科学进展, 2019, 34(3): 232-242.
[6] 张春灌,李想,袁炳强,宋立军. 地球磁异常( EMAG2)数据中海域资料质量评估[J]. 地球科学进展, 2019, 34(3): 288-294.
[7] 汪品先. 深水珊瑚林[J]. 地球科学进展, 2019, 34(12): 1222-1233.
[8] 劳齐斌, 矫立萍, 陈法锦, 陈立奇. 北极区域传统和新型POPs研究进展[J]. 地球科学进展, 2017, 32(2): 128-138.
[9] 汪品先. 未雨绸缪——迎接大洋钻探学术新计划的制定[J]. 地球科学进展, 2017, 32(12): 1229-1235.
[10] 王汝建, 肖文申, 章陶亮, 聂森艳. 极地地质钻探研究进展与展望[J]. 地球科学进展, 2017, 32(12): 1236-1244.
[11] 林间, 徐敏, 周志远, 王月. 全球俯冲带大洋钻探进展与启示[J]. 地球科学进展, 2017, 32(12): 1253-1266.
[12] 王风平, 陈云如. 深部生物圈研究进展与展望[J]. 地球科学进展, 2017, 32(12): 1277-1286.
[13] 赵玉龙, 刘志飞. 等积体在全球大洋中的空间分布及其古环境意义——国际大洋钻探计划对全球等深流沉积研究的贡献[J]. 地球科学进展, 2017, 32(12): 1287-1296.
[14] 吴晨曦, 刘世杰, 田一翔, 童小华. 基于多源遥感数据的南极三大冰架前端变化分析[J]. 地球科学进展, 2016, 31(2): 206-212.
[15] 赵进平, 史久新, 王召民, 李志军, 黄菲. 北极海冰减退引起的北极放大机理与全球气候效应[J]. 地球科学进展, 2015, 30(9): 985-995.
阅读次数
全文


摘要