地球科学进展 ›› 2009, Vol. 24 ›› Issue (5): 497 -505. doi: 10.11867/j.issn.1001-8166.2009.05.0497

综述与评述 上一篇    下一篇

城市区域热辐射方向性研究进展
周 纪,陈云浩*,李 京,马 伟,占文凤   
  1. 地表过程与资源生态国家重点实验室, 北京师范大学资源学院, 北京  100875
  • 收稿日期:2008-12-08 修回日期:2009-03-19 出版日期:2009-05-10
  • 通讯作者: 陈云浩(1974-),男,安徽固镇人,副教授,主要从事城市热环境遥感研究. E-mail:cyh@ires.cn
  • 基金资助:

    国家自然科学基金项目“城市地表热辐射方向性模型及能量通量的角度订正方法”(编号:40771136)和“大城市建筑结构及材料与城市热岛效应耦合机制的遥感研究——以北京为例”(编号:40701114);北京市优秀人才培养资助项目“北京市地表能量收支的遥感研究”(编号:20081D0503100254)资助.

Progress in Thermal Anisotropy of Urban areas: A Review

Zhou Ji,Chen Yungao,Li Jing,Ma Wei,Zhan Wenfeng   

  1. State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Resources Science & Technology, Beijing Normal University, Beijing  100875, China
  • Received:2008-12-08 Revised:2009-03-19 Online:2009-05-10 Published:2009-05-10

      城市是陆地生态系统中极为重要的地表覆盖类型,把握其热辐射特征对于研究城市地表能量平衡和城市热岛具有积极的意义。相对于自然地表,城市区域表现出更为显著的热辐射方向特征,但这方面的研究直到近年来才开始发展起来。对城市区域的航空遥感和地表观测试验均揭示,城市区域热辐射方向性与太阳—地面目标—传感器几何关系、城市形态与结构、地面目标物理性质等密切相关。同时,为描述城市区域热辐射方向性,辐射温度三维格局模型、几何模型以及辐射传输模型都相继建立起来。从热辐射方向性的试验观测、模型建立及其与城市热岛关系等角度入手,系统回顾了城市区域热辐射方向性的研究进展,并对已经取得的研究成果进行了总结。最后,指出了尚待解决的问题及今后应着重研究的方向。

 Urban surface is one of the most important land cover types in the land surface ecosystem. Investigations on thermal radiation features of urban surfaces are helpful for researches about energy balance in urban environments and urban heat islands (UHIs). Thermal anisotropy in urban areas is more significant than that of natural surfaces. However, related researches have been slowed down. In recent years, observations onboard air-crafts and ground platforms have revealed that thermal anisotropy in urban area is related to the geometric conditions of sun-ground targets-sensor, the configurations and physical features of urban areas. In addition, models for describing the radiative temperature patterns, geometric relationships and radiative transfer schemes in urban areas have been proposed by literatures. In this study, the progresses of researches about thermal anisotropy in urban areas have been reviewed from several aspects, including experiments, modeling and the relationships between thermal anisotropy and surface UHI. It is also pointed out that the issues remain further investigation.


中图分类号: 

[1] Monteith J, Szeicz G. Radiative temperature in the heat balance of natural surfaces[J].The Quarterly Journal of the Royal Meteorological Society,1962,88(378):496-507.

[2] Paw U K. Development of models for thermal infrared radiation above and within plant canopies[J].ISPRS Journal of Photogrammetry and Remote Sensing,1992,47:189-203.

[3] Rao P. Remote sensing of urban heat islands from an environmental satellite[J].Bulletin of American Meteorology Society,1972,53(7): 647-648.

[4] Voogt J, Oke T. Thermal remote sensing of urban climates[J].Remote Sensing of Environment,2003, 86: 370-384.

[5] Voogt J, Oke T. Effects of urban surface geometry on remotely-sensed surface temperature[J].International Journal of Remote Sensing,1998, 19(5): 895-920.

[6] Lagouarde J, Moreau P, Irvine M, et al. Airborne experimental measurements of the angular variations in surface temperature over urban areas: Case study of Marseille (France)[J].Remote Sensing of Environment,2004, 93: 443-462.

[7] Lagouarde J, Irvine M. Directional anisotropy in thermal infrared measurements over Toulouse city centre during the CAPITOUL measurement campaigns: First results[J].Meteorology and Atmospheric Physics, 2008, 102(3/4):173-185.

[8] Soux A, Voogt J, Oke T. A Model to calculate what a remote sensor sees′ of an urban surface[J].Boundary-Layer Meteorology, 2004, 111: 109-132.

[9] Ma Wei. A Computer Model for Simulating the Directional Thermal Radiance of Urban Targets[D]. Beijing: Beijing Normal University, 2009.[马伟. 城市目标热辐射方向性计算机模型研究[D]. 北京: 北京师范大学, 2009.]

[10] Norman J,Becker F. Terminology in thermal infrared remote sensing of natural surfaces[J].Agricultural and Forest Meteorology,1995, 77: 153-166.

[11] Liang S.Quantitative Remote Sensing of Land Surfaces[M]. New Jersey: John Wiley & Sons Inc, 2004: 15.

[12] Kimes D.Effects of vegetation canopy structure on remotely sensed canopy temperatures[J].Remote Sensing of Environment,1980, 10: 165-174.

[13] Kimes D, Idso S, Pinter P, et al. View angle effects in the radiometric measurement of plant canopy temperatures[J].Remote Sensing of Environment,1980, 10: 273-284.

[14] Kimes D, Kirchner J. Directional radiometric measurements of row-crop temperatures[J].International Journal of Remote Sensing, 1983, 4(2): 299-311.

[15] PawU K, Ustin S, Zhang C. Anistropy of thermal infrared exitance in sunflower canopies[J].Agricultural and Forest Meteorology, 1989, 48: 45-58.

[16] Lagouarde J, Kerr Y, Brunet Y. An experimental study of angular effects on surface temperature for various plant canopies and bare soils[J].Agricultural and Forest Meteorology,1995, 77: 167-190.

[17] Verbrugghe M, Cierniewski J. Influence and modeling of view angles and microrelief on surface temperature measurements of bare agricultural soils[J].ISPRS Journal of Photogrammetry & Remote Sensing, 1998, 53: 166-173.

[18] Lagouarde J, Ballans H, Moreau P, et al. Experimental study of brightness surface temperature angular variations of maritime pine (pinus pinaster) stands[J].Remote Sensing of Environment, 2000, 72: 17-34.

[19] Chehbouni A, Nouvellon Y, Kerr Y, et al. Directional effect on radiative surface temperature measurements over a semiarid grassland site[J].Remote Sensing of Environment, 2001, 76: 360-372.

[20] Li Z, Zhang R, Sun X, et al. Experimental system for the study of the directional thermal emission of natural surfaces[J].International Journal of Remote Sensing, 2004, 25(1): 195-204.

[21] Yu Tao, Gu Xingfa, Tian Guoliang,et al. Analyzing the errors caused by FOV effect on the ground observations of directional brightness temperature over a row structured canopy[J].Journal of Remote Sensing, 2004, 8(5): 443-450.[余涛, 顾行发, 田国良, 等.垄行作物玉米方向亮温野外测量中视场角影响的简单分析[J]. 遥感学报, 2004, 8(5): 443-450.]

[22] Yu Tao, Gu Xingfa, Tian Guoliang, et al. Modeling directional brightness temperature over a maize canopy in row structure[J].Journal of Remote Sensing,2006,10(1): 15-20.[余涛,顾行发,田国良,等.垄行结构玉米冠层方向亮温模型研究[J]. 遥感学报, 2006, 10(1): 15-20.]

[23] Yu Tao, Gu Xingfa, Tian Guoliang, et al. Comparison of four measurement methods for acquiring maize hemispherical directional brightness temperature with a cane based thermal camera system[J].Journal of Remote Sensing,2006, 10(2): 145-150.[余涛,顾行发, 田国良,等.采用热像仪测量玉米冠层半球方向亮温的四种方法比较[J]. 遥感学报, 2006, 10(2): 145-150.]

[24] Minnis P, Khaiyer M. Anisotropy of land surface skin temperature derived from satellite data[J].Journal of Applied Meteorology,2000, 39: 1 117-1 129.

[25] Lipton A, Ward J. Satellite-view biases in retrieved surface temperatures in mountain areas[J].Remote Sensing of Environment,1997, 60: 92-100.

[26] Iino A, Hoyano A. Development of a method to predict the heat island potential using remote sensing and GIS data[J].Energy and Buildings,1996, 23: 199-205.

[27] Yu Tao,Tian Qiyan, Gu Xingfa, et al. Modeling directional brightness temperature over a simple typical structure of urban areas[J].Journal of Remote Sensing, 2006, 10(5): 661-669.[余涛,田启燕,顾行发,等.城市简单目标方向亮温研究[J]. 遥感学报, 2006, 10(5): 661-669.]

[28] Sugawara H, Takamura T. Longwave radiation flux from an urban canopy:Evaluation via measurements of directional radiometric temperature[J].Remote Sensing of Environment,2006, 104: 226-237.

[29] Voogt J, Soux A. Methods for the assessment of representative urban surface temperatures[C]//Third Symposium on the Urban Environment. Davis, CA: American Meteorological Society,2006.

[30] Voogt J, Oke T. Complete urban surface temperatures[J].Journal of Applied Meteorology,1997, 36: 1 117-1 132.

[31] Voogt J. Image representations of complete urban surface temperatures[J].Geocarto International,2000, 15(3): 19-29.

[32] Kanda M. Progress in the scale modeling of urban climate: Review[J].Theoretical and Applied Climatology, 2006, 84: 23-34.

[33] Kanda M. Progress in urban meteorology: A review[J].Journal of the Meteorological Society of Japan,2007, 85B: 363-383.

[34] Nichol J. High-resolution surface temperature patterns related to urban morphology in a tropical city: A satellite-base study[J].Journal of Applied Meteorology,1996, 35: 135-146.

[35] Nichol J. Visualisation of urban surface temperatures derived from satellite images[J].International Journal of Remote Sensing,1998, 19(9): 1 639-1 649.

[36] Sobrino J, Caselles V. Thermal infrared radiance model for interpreting the directional radiometric temperature of a vegetative surface[J].Remote Sensing of Environment,1990, 33(3): 193-199.

[37] Voogt J. Assessment of an urban sensor view model for thermal anisotropy[J].Remote Sensing of Environment,2008, 112: 482-495.

[38] Johnson G, Oke T, Lyons T, et al. Simulation of surface urban heat islands under ideal′ conditions at night part 1: Theory and tests against field data[J].Boundary-Layer Meteorology,1991, 56(3): 275-294.

[39] Oke T, Johnson G, Steyn D, et al. Simulation of surface urban heat islands under ideal′ conditions at night part 2: Diagnosis of causation[J].Boundary-Layer Meteorology,1991, 56(4): 339-358.

[40] Fontanilles G, Briottet X, Fabre S, et al. TITAN:An infrared radiative transfer model for heterogeneous 3-D surface-application over urban areas[J].Applied Optics,2008, 47(31):5 799-5 810.

[41] Huang Huaguo, Xin Xiaozhou, Liu Qinhuo, et al. Using CUPID to simulate wheat canopy component temperatures distribution:Sensitivity analysis and evaluation[J].Journal of Remote Sensing,2007,11(1):94-102.[黄华国,辛晓洲,柳钦火,等.用CUPID模型模拟小麦组分温度分布:敏感性分析与验证[J]. 遥感学报,2007,11(1): 94-102.]

[42] Huang Huaguo,Liu Qinhuo, Liu Qiang, et al. Simulation of time effect on thermal emission directionality measurement[J].Journal of System Simulation,2007,19(15):3 586-3 590.[黄华国,柳钦火,刘强,等.热辐射方向性测量中的时间效应模拟[J]. 系统仿真学报,2007,19(15):3 586-3 590.]

[43] Mills G. An urban canopy-layer climate model[J].Theoretical and Applied Climatology,1997, 57: 229-244.

[44] Krayenhoff E, Voogt J. A microscale three-dimensional urban energy balance model for studying surface temperatures[J].Boundary-Layer Meteorology,2007,123:433-461.

[45] Voogt J A,Krayenhoff. Modelling urban thermal anisotropy[C]//5th International Symposium on Remote Sensing of Urban Areas (URS 2005), 14-16 March,Phoenix,2005.

[46] Roth M, Oke T, Emery W. Satellite-derived urban heat islands from three coastal cities and the utilization of such data in urban climatology[J].International Journal of Remote Sensing,1989,10(11):1 699-1 720.

[47] Lo C, Quattrochi D, Luvall J. Application of high-resolution thermal infrared remote sensing and GIS to assess the urban heat island effect[J].International Journal of Remote Sensing,1997,18(2):287-304.

[48] Ben-Dor E, Saaroni H. Airborne video thermal radiometry as a tool for monitoring microscale structures of the urban heat island[J].International Journal of Remote Sensing,1997,18(14):3 039-3 053.

[49] Quattrochi D, Ridd M. Analysis of vegetation within a semi-arid urban environment using high spatial resolution airborne thermal infrared remote sensing data[J].Atmospheric Environment,1998,32(1):19-33.

[50] Goldreich Y. Ground and top of canopy layer urban heat island partitioning on an airborne image[J].Remote Sensing of Environment,2006,104:247-255.

[51] Streutker D. A remote sensing study of the urban heat island of Houston, Texas[J].International Journal of Remote Sensing,2002,23(13): 2 595-2 608.

[52] Streutker D. Satellite-measured growth of the urban heat island of Houston, Texas[J].Remote Sensing of Environment,2003,85:282-289.

[53] Huang T, Uchihama D, Ochi S, et al. Assessment with satellite data of the urban heat island effects in Asian mega cities[J].International Journal of Applied Earth Observation and Geoinformation,2006, 8: 34-48.

[54] Zhou Ji, Chen Yunhao, Li Jing, et al. A volume model for urban heat island based on remote sensing imagery and its application: A case study in Beijing[J].Journal of Remote Sensing,2008, 12(5): 734-742.[周纪,陈云浩,李京,等.基于遥感影像的城市热岛容量模型及其应用——以北京地区为例[J]. 遥感学报, 2008, 12(5): 734-742.][55] Wang K, Wang J, Wang P, et al. Influences of urbanization on surface characteristics as derived from the Moderate-Resolution Imaging Spectroradiometer: A case study for the Beijing metropolitan area[J].Journal of Geophysical Research,2007, 112,D22S06, doi: 10.1029/2006JD007997.

[1] 王忠静,石羽佳,张腾. TRMM遥感降水低估还是高估中国大陆地区的降水?[J]. 地球科学进展, 2021, 36(6): 604-615.
[2] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[3] 吴佳梅,彭秋志,黄义忠,黄亮. 中国植被覆盖变化研究遥感数据源及研究区域时空热度分析[J]. 地球科学进展, 2020, 35(9): 978-989.
[4] 董治宝,吕萍,李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[5] 刘元波, 吴桂平, 赵晓松, 范兴旺, 潘鑫, 甘国靖, 刘永伟, 郭瑞芳, 周晗, 王颖, 王若男, 崔逸凡. 流域水文遥感的科学问题与挑战[J]. 地球科学进展, 2020, 35(5): 488-496.
[6] 刘磊,翁陈思,李书磊,胡帅,叶进,窦芳丽,商建. 太赫兹波被动遥感冰云研究现状及进展[J]. 地球科学进展, 2020, 35(12): 1211-1221.
[7] 李浩杰,李弘毅,王建,郝晓华. 河冰遥感监测研究进展[J]. 地球科学进展, 2020, 35(10): 1041-1051.
[8] WangJingfeng,刘元波,张珂. 最大熵增地表蒸散模型:原理及应用综述[J]. 地球科学进展, 2019, 34(6): 596-605.
[9] 陈泽青,刘诚,胡启后,洪茜茜,刘浩然,邢成志,苏文静. 大气成分的遥感监测方法与应用[J]. 地球科学进展, 2019, 34(3): 255-264.
[10] 冉有华,李新. 中国多年冻土制图:进展、挑战与机遇[J]. 地球科学进展, 2019, 34(10): 1015-1027.
[11] 陈云浩, 吴佳桐, 王丹丹. 广义地表热辐射方向性计算机模拟研究进展[J]. 地球科学进展, 2018, 33(6): 555-567.
[12] 肖雄新, 张廷军. 基于被动微波遥感的积雪深度和雪水当量反演研究进展[J]. 地球科学进展, 2018, 33(6): 590-605.
[13] 栾海军, 田庆久, 章欣欣, 聂芹, 朱晓玲. 定量遥感地表参数尺度转换研究趋势探讨[J]. 地球科学进展, 2018, 33(5): 483-492.
[14] 宋晓谕, 高峻, 李新, 李巍岳, 张中浩, 王亮绪, 付晶, 黄春林, 高峰. 遥感与网络数据支撑的城市可持续性评价:进展与前瞻[J]. 地球科学进展, 2018, 33(10): 1075-1083.
[15] 王建, 车涛, 李震, 李弘毅, 郝晓华, 郑照军, 肖鹏峰, 李晓峰, 黄晓东, 钟歆玥, 戴礼云, 李红星, 柯长青, 李兰海. 中国积雪特性及分布调查[J]. 地球科学进展, 2018, 33(1): 12-15.
阅读次数
全文


摘要