地球科学进展 ›› 2010, Vol. 25 ›› Issue (1): 7 -13. doi: 10.11867/j.issn.1001-8166.2010.01.0007

综述与评述 上一篇    下一篇

卫星遥感探测大气CO 2浓度研究最新进展
石广玉 1,戴铁 1,2*,徐娜 1,2   
  1. 1.中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室,北京100029;2.中国科学院研究生院,北京100049
  • 收稿日期:2009-03-10 修回日期:2009-05-29 出版日期:2010-01-10
  • 通讯作者: 戴铁(1984-),男,江苏泗阳人,博士研究生,主要从事卫星遥感探测研究. E-mail:daitie@mail.iap.ac.cn
  • 基金资助:

    风云三号卫星应用系统工程研发项目“红外分光计大气二氧化碳浓度卫星反演算法研究及原形软件研发”(编号:4-5);国家重点基础研究发展计划项目“中国大气气溶胶及其气候效应的研究”(编号:2006CB403705)

Latest Progress of the Study of Atmospheric CO 2 Concentration Retrievals from Satellite

SHI Guangyu 1, DaI Tie 1,2,XU Na 1,2   

  1. 1.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing100029, China;2.Graduate University of the Chinese Academy of Sciences, Beijing100049, China
  • Received:2009-03-10 Revised:2009-05-29 Online:2010-01-10 Published:2010-01-10
  • Contact: 戴铁(1984),男,江苏泗阳人,博士研究生,主要从事卫星遥感探测研究.E-mail:daitie@mail.iap.ac.cn E-mail:daitie@mail.iap.ac.cn

大气CO2是一种重要的长寿命温室气体,卫星遥感探测大气CO2浓度,可以连续地获得其全球时空分布变化情况,进而提高对大气CO2源汇分布及区域和全球碳循环的认识,进一步增强对全球气候变化的研究和预测。卫星遥感探测大气CO2浓度已经开始成为一个新的研究领域,文章综合论述了利用卫星平台遥感探测大气CO2浓度分布的最新研究状况。首先简单地叙述了现阶段对大气CO2浓度时空分布和变化情况的直接仪器观测结果,在此基础上比较全面地综述了卫星遥感测量大气CO2浓度的主要方法及获得的结果,包括利用近红外反射太阳光谱或地气热红外发射辐射光谱及两者的组合进行得模拟和卫星实测反演研究,最后简单地进行了总结和展望。

Atmospheric carbon dioxide is an important and long-lived greenhouse gas. Satellite measurements of the distribution of the global atmospheric CO2 would get its continuous change. Improved quantitative understanding of the distribution and variability of the sources and sinks of CO2 and the global carbon cycle would be done, furthermore, the research and prediction on the global climate change would be enhanced. The remote sensing of the atmospheric CO2 from instrumentation aboard satellite has been a new area of research. The research on the remote sensing of the measurements of the distribution of the atmospheric CO2 from satellite is summarily commented in this paper. Firstly, the temporal and spatial distribution and variability of atmospheric CO2 concentration monitored by direct instrument observations is presented, then the main methods and results of satellite remote sensing measurements of atmospheric CO2 concentration are reviewed, including the measurements of the near infrared reflected sunlight or the thermal infrared emission spectroscopy and the combination of both measurement, finally the summary and prospects are discussed briefly.

中图分类号: 

[1] Forster P,Ramaswamy V,Artaxo P,et al. Changes in atmospheric constituents and in radiative forcing[C]Solomon S, Qin D, Manning M, et al. Climate Change 2007: The Physical Science Basis. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007.
[2] Bousquet P,Peylin P,Ciais P,et al. Regional changes in carbon dioxide fluxes of land and oceans since 1980[J].Science,2000,290(5495):1 342-1 346.
[3] Fan S,Gloor M,Mahlman S,et al. A large terrestrial carbon dioxide data and models[J].Science,1998,282(5 388):442-446.
[4] King J I F. Scientific Uses of Earth Satellites[M].Ann Arbor:University of Michigan Press, 1956.
[5] Kaplan L D. Inference of atmospheric structure from remote radiation measurement[J].Journal of the Optical Society of America,1959,49:1 004-1 007.
[6] Chen Weimin. Satellite Climatology [M]. Beijing: China Meteorological Press, 2003.[陈渭民.卫星气象学[M].北京:气象出版社,2003.]
[7] Keeling C D,Whorf T P,Wahlen M,et al. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980[J].Nature,1995,375:666-670.
[8] Nakazawa T,Sugawara S,Inoue G,et al. Aircraft measurements of the concentrations of CO2, CH4,N2O and CO in the troposphere over Russia[J].Journal of Geophysical Research,1997,102(D3):3 843-3 859.
[9] Nakazawa T, Morimoto S, Aoki S,et al. Temporal and spatial variations of the carbon isotopic ratio of atmospheric carbon dioxide in the western Pacific region[J].Journal of Geophysical Research,1997,102:1 271-1 285.
[10] Aoki S,Nakazawa T,Machida T,et al. Carbon dioxide variations in the stratosphere over Japan, Scandinavia and Antarctica[J].Tellus,2003,55:178-186.
[11] Tsutsumi Y. The Global Analyses Method by the WDCGG Using the Archived Data[R]. WMO World Data Centre for Greenhouse Gases Technical Document,2007.
[12] NOAA. Trends in Atmospheric Carbon Dioxide [EB/OL].http:www.esrl.noaa.gov/gmd/ccgg/trends/,2009.
[13] Enting I G,Pierman G I. Average global distribution of CO2[C]Heimenn M. The Global Carbon Cycle. New York:SpringerVerlag,1993.
[14] Nakazawa T, Miyashita K, Aoki S, et al. Temporal and spatial variations of upper tropospheric and lower stratospheric carbon dioxide[J].Tellus,1991,43:106-117.
[15] NakazawaT, Morimoto S, Aoki S, et al. Time and space variations of the carbon isotopic ratio oftropospheric carbon dioxide over Japan[J].Tellus,1993,45,258-274.
[16] Nakazawa T, Machida T, Sugawara S, et al. Measurements of the stratospheric carbon dioxide concentration over Japan using a balloon-borne cryogenic sampler[J].Geophysical Research Letters,1995,22:1 229-1 232.
[17] Park J H. Atmospheric CO2 monitoring from space[J].Applied Optics,1997,36:2 701-2 712.
[18] Engelen R J,Denning A S,Gurney K R,et al. Global observations of the carbon budget 1. Expected satellite capabilities for emission spectroscopy in the EOS and NPOESS eras[J].Journal of Geophysical Research,2001,106(17):20 055-20 068.
[19] Cayla F, Javelle P. IASI instrument overview: Advanced and next-generation satellite[J].Proceedings of SPIE,1995,2 583:271-281.
[20] Aumann H,Pagano R. The atmospheric infrared sounder on EOS[J].Optical Engineering,1994,32:776-784.
[21] Chédin A,Saunders R,Hollingsworth A,et al. The feasibility of monitoring from high-resolution infrared sounders[J].Journal of Geophysical Research,2003,108(D2),4064,doi:10.1029/2001JD001443.
[22] Dai Tie,Zheng Youfei,Shi Guangyu. Theoretic study on the retrieval of atmospheric CO2 concentrations from infrared emitting spectrum[J].Meteorological and Environmental Science,2008,31(1):1-5.[戴铁,郑有飞,石广玉.利用红外辐射光谱反演大气CO2浓度的理论研究[J]. 气象与环境科学,2008,31(1):1-5.]
[23] O′Brien D M,Rayner P J. Global observations of the carbon budget 2, CO2 column from differential absorption of reflected sunlight in the 1.61 band of CO2[J].Journal of Geophysical Research,2002,107(D18),4354,doi:10.1029/2001JD000617.
[24] Kuang Z M,Margolis J,Toon G,et al. Spaceborne measurement of atmospheric CO2 by high-resolution NIR spectrometry of reflected sunlight: An introductory study[J].Geophysical Research Letters,2002,29(15),1716,doi:10.1029/2001GL014298.
[25] Mao J P,Kawa S R. Sensitivity studies for space-based measurement of atmospheric total column carbon dioxide by reflected sunlight[J].Applied Optics,2004,43 (4):914-927.
[26] Clough S A,Iacono M J,Moncet J L. Line-by-line calculation of atmospheric fluxes and cooling rates: Application to water vapor[J]. Journal of Geophysical Research,1992,97:15 761-15 785.
[27] Clough S A,Iacono M J. Line-by-line calculations of atmospheric fluxes and cooling rates. 2. Applications to carbon dioxide, ozone, methane, nitrous oxide, and halocarbons[J].Journal of Geophysical Research,1995,100:16 519-16 535.
[28] Christi M J,Stephens G L. Retrieving profiles of atmospheric in clear sky and in the presence of thin cloud using spectroscopy from the near and thermal infrared: A preliminary case study[J]. Journal of Geophysical Research,2004,109,D04316,doi:10.1029/2003JD004058.
[29] Smith W L,Woolf H M,Hayden C M,et al. The TIROS-N operational vertical sounder[J].Bulletin of the American Meteorological Society,1979,60:1 177-1 187.
[30] Chédin A,Serrar S,Armante R,et al. Signatures of annual and seasonal variations of CO2 and other greenhouse gases from NOAA/TOVS observations and model simulations[J].Journal of Climate,2002,15:95-116.
[31] Chédin A,Hollingsworth A,Scott A,et al. Annual and seasonal variations of atmospheric CO2, N2O and CO concentrations retrieved from NOAA/TOVS satellite observations[J].Geophysical Research Letters,2002,29(8),1269,doi:10.1029/2001GL014082. 
[32] Scott N A,Chédin A. A fast line-by-line method for atmospheric absorption computations: The automatized atmospheric absorption atlas[J].Journal of Applied Meteorology,1981,20:801-812. 
[33] Chédin A,Serrar S,Scott N A,et al. First global measurement of midtropospheric CO2 from NOAA polar satellite: Tropical zone[J].Journal of Geophysical Research,2003,108(D18),4581,doi:10.1029/2003JD003439. 
[34] Crevoisier C,Heilliette S,Chédin A,et al. Midtropospheric CO2 concentration retrieval from AIRS observations in the tropics[J].Geophysical Research Letters,2004,31,L17106,doi:10.1029/2004GL020141.
[35] Engelen R J,McNally A P. Estimating atmospheric CO2 from advanced infrared satellite radiances within an operational four-dimensional variational (4D-Var) data assimilation system: Results and validation[J].Journal of Geophysical Research,2005,110,D18305,doi:10.1029/2005JD005982.
[36] Chahine M,Barnet C,Olsen E T,et al. On the determination of atmospheric minor gases by the method of vanishing partial derivatives with application to CO2[J].Geophysical Research Letters,2005,32,L22803,doi:10.1029/2005GL024165.
[37] Bovensmann H,Burrows J P,Buchwitz M,et al. SCIAMACHY Mission objectives and measurement modes[J].Journal of the Atmospheric Sciences,1999,56:127-150.
[38] Buchwitz M,de Beek R,Burrows J P,et al. Atmospheric methane and carbon dioxide from SCIAMACHY satellite data: Initial comparison with chemistry and transport models[J].Atmospheric Chemistry Physics,2005,5:941-962.
[39] Buchwitz M,de Beek R,Noel S,et al. Carbon monoxide, methane and carbon dioxide columns retrieved from SCIAMACHY by WFM-DOAS: Year 2003 initial data set[J].Atmospheric Chemistry Physics,2005,5:3 313-3329.
[40] Buchwitz M,Schneising O,Burrows J P,et al. First direct observation of the atmospheric year-to-year increase from space[J].Atmospheric Chemistry Physics,2007,7:4 249-4 256.
[41] Barkley M P,Monks P S,Engelen R J. Comparison of SCIAMACHY and AIRS measurement over North America during the summer and autumn of 2003[J].Geophysical Research Letters,2006,33,L20805,doi:10.1029/2006GL026807.
[42] Barkley M P,Monks P S,Hewitt A J,et al. Assessing the near surface sensitivity of SCIAMACHY atmospheric CO2 retrieved using (FSI) WFM-DOAS[J].Atmospheric Chemistry Physics,2007,7:3 597-3 619.
[43] Crisp D,Atlas R M,Breon F M,et al. The Orbiting Carbon Observatory (OCO) mission[J].Advance in Space Research,2004,34(4):700-709.
[44] Crisp D,Johnson C. The orbiting carbon observatory mission[J]. Acta Astronautica,2005,56:193-197.
[45] BÖsch H,Toon G C,Sen B,et al. Space-based near-infrared CO2 measurements: Testing the Orbiting Carbon Observatory retrieval algorithm and validation concept using SCIAMACHY observations over Park Falls, Wisconsin[J].Journal of Geophysical Research,2006,111,D23302,doi:10.1029/2006JD007080.
[46] Rodgers C D. Inverse Methods for Atmospheric Sounding: Theory and Practice[M].Singapore:World Science Publishing,2000.

[1] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[2] 王忠静,石羽佳,张腾. TRMM遥感降水低估还是高估中国大陆地区的降水?[J]. 地球科学进展, 2021, 36(6): 604-615.
[3] 房婷婷, 付广裕. 卫星重力与地球重力场的文献计量分析[J]. 地球科学进展, 2021, 36(5): 543-552.
[4] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[5] 吴佳梅,彭秋志,黄义忠,黄亮. 中国植被覆盖变化研究遥感数据源及研究区域时空热度分析[J]. 地球科学进展, 2020, 35(9): 978-989.
[6] 董治宝,吕萍,李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[7] 涂梦昭,刘志锋,何春阳,任强,卢文路. 基于 GRACE卫星数据的中国地下水储量监测进展[J]. 地球科学进展, 2020, 35(6): 643-656.
[8] 刘元波, 吴桂平, 赵晓松, 范兴旺, 潘鑫, 甘国靖, 刘永伟, 郭瑞芳, 周晗, 王颖, 王若男, 崔逸凡. 流域水文遥感的科学问题与挑战[J]. 地球科学进展, 2020, 35(5): 488-496.
[9] 刘磊,翁陈思,李书磊,胡帅,叶进,窦芳丽,商建. 太赫兹波被动遥感冰云研究现状及进展[J]. 地球科学进展, 2020, 35(12): 1211-1221.
[10] 李浩杰,李弘毅,王建,郝晓华. 河冰遥感监测研究进展[J]. 地球科学进展, 2020, 35(10): 1041-1051.
[11] WangJingfeng,刘元波,张珂. 最大熵增地表蒸散模型:原理及应用综述[J]. 地球科学进展, 2019, 34(6): 596-605.
[12] 陈泽青,刘诚,胡启后,洪茜茜,刘浩然,邢成志,苏文静. 大气成分的遥感监测方法与应用[J]. 地球科学进展, 2019, 34(3): 255-264.
[13] 黄亦鹏,李万彪,赵玉春,白兰强. 基于雷达与卫星的对流触发观测研究和临近预报技术进展[J]. 地球科学进展, 2019, 34(12): 1273-1287.
[14] 冉有华,李新. 中国多年冻土制图:进展、挑战与机遇[J]. 地球科学进展, 2019, 34(10): 1015-1027.
[15] 王萌,张艳伟,刘志飞,吴家望. 南海北部中尺度涡的时空分布特征:基于卫星高度计资料的统计分析[J]. 地球科学进展, 2019, 34(10): 1069-1080.
阅读次数
全文


摘要