地球科学进展 ›› 2010, Vol. 25 ›› Issue (10): 1040 -1050. doi: 10.11867/j.issn.1001-8166.2010.10.1040

综述与评述 上一篇    下一篇

磷酸盐氧同位素组成的测定方法及分馏机理研究进展
陈志刚 1,黄奕普 1*, 刘广山 1,2, 蔡毅华 1,卢阳阳 1,刘润 1   
  1. 1.厦门大学海洋与环境学院, 福建厦门 361005; 2.近海海洋环境科学国家重点实验室,福建厦门 361005
  • 收稿日期:2010-04-12 修回日期:2010-08-24 出版日期:2010-10-10
  • 通讯作者: 黄奕普(1936-),男,福建南安人,教授,主要从事同位素海洋学研究.  E-mail:yphuang@xmu.edu.cn
  • 基金资助:

    国家自然科学青年基金项目“磷酸盐的氧同位素组成对厦门海域磷循环的示踪”(编号:40706033);中国大洋协会国际海底区域研究开发“十一五”项目“热液羽状流的化学与同位素特征及其指示意义”(编号:DYXM-115-02-1-12);厦门大学自选课题“南极普里兹湾及其邻近海域的同位素地球化学”(编号:2002xjkt018)资助.

Advances  in  the Measurement Methods and Fractionation Mechanism of the Oxygen Isotope Composition of Phosphate

Chen Zhigang 1, Huang Yipu 1, Liu Guangshan 1,2, Cai Yihua 1, Lu Yangyang 1, Liu run 1   

  1. 1.College of Oceanography and Environment, Xiamen University, Xiamen 361005, China;
    2.State Key Laboratory of Marine Environment Science, Xiamen 361005, China
  • Received:2010-04-12 Revised:2010-08-24 Online:2010-10-10 Published:2010-10-10

磷酸盐氧同位素组成在古气候和磷的生物地球化学循环研究中都具有十分重要的意义。测定方法和同位素的分馏机理是该类研究的基础。国际上已开展了一系列磷酸盐氧同位素的测定方法和分馏机理研究。在测定方法上,由初期的间接法,经高温还原/裂解法到氟化法,再演化到改进后的高温还原法(包括TC/EA-IRMS法),甚至激光原位技术,样品由实验室纯化学试剂扩展到各种复杂地质样品,在测量精确度、测量速度、样品用量、安全性和技术要求方面都有巨大改进。在分馏机理上,①尽管Longinelli等建立的关系式已获得了天然样品的验证,并认为是平衡分馏,但实验室模拟结果与其还存在较大差异(即没有达到平衡分馏)。②在地表温度和pH条件下,无机过程均不会造成水体中溶解态磷酸盐和水之间的氧同位素交换。在高温(>70℃)及不同pH条件下,即使没有生物作用也会造成溶解磷酸盐和水分子之间进行氧的同位素交换,但不同实验室之间结果不一致。③在生物作用存在下,溶解无机磷酸盐和水之间在地表环境会发生强烈氧同位素交换,但除了PPase外,其余均没有达到平衡值。④磷灰石的氧同位素组成要比形成它的溶解态磷酸盐的值高1‰~1.4‰,因此在把Longinelli等关系式用于溶解态磷酸盐和水体系时,需要考虑该因素。同位素平衡分馏和条[JP2]件有关,认为无机条件下的高温(>70℃)实验结果不一致,以及有生物参与的培养实验结果偏离平衡值,都是实验条件不同所致,包括pH、磷酸盐浓度、生物种类、生物量等。

Oxygen isotope composition of phosphate is an important tracer for paleoclimatology and phosphorus cycle studies. The measurement methods  and the fractionation mechanism are the basis  of this kind of study. There have been a lot of these kinds of research. The measurement methods are enveloped from the indirectly methods, to high temperature reduction or pyrolyze, then to fluorination, to improved high temperature reduction, at last, to TC/EA-IRMS, and even to the laser in situ technology. The samples are extended from pure chemical regents to the geology samples. The measurement precision, sample amount, data output, safety and technical requirement are all improved  greatly. For the isotope fractionation mechanism, ① Although Longinelli′s formula was confirmed by nature samples, and was regarded as equilibrium fractionation, but the results of culture experiments did not agree with the formula (not equilibrium). ②For the nature temperature and pH of the earth surface, non-biological processes can not make the oxygen exchange between the phosphate and water. But at high temperature (>70℃), phosphate and water can exchange oxygen intensively at different pH, even without biological activity. And the results of different laboratory disagree with each other. ③ The phosphate can exchange oxygen water intensively under biological process. But all are  away from equilibrium fractionation except the PPase. ④ The oxygen isotope of apatite was higher than the dissolved phosphate by 1‰~1.4‰. Therefore,  when the Longinelli′s formula was used to the dissolved phosphate  attention should be paid to  this. The equilibrium fractionation is condition depended, so the disagreement of non-biological experiment results at high temperature (>70℃), and the non-equilibrium fractionation of the biological culture experiments,  are all  the results of condition change, including pH, concentration of phosphate, kinds of organism, biomass and so on.

中图分类号: 

[1] Urey H C. The thermodynamic properties of isotopic substances[J].Journal of the Chemical Society(Resumed),1947, 5:562-581.[2] Urey H C. Oxygen isotopes in nature and in the laboratoryc[J].Science,1948, 108(2 810): 489-496.
[3] Urey H C, Lowenstam H A, Epstein S, et al. Measurement of paleotemperatures and temperatures of the upper Cretaceous of England, Denmark, and the southeastern United States[J].Geological Society of America Bulletin,1951, 62(4): 399-416.
[4] McKinney C R, McCrea J M, Epstein S, et al. Improvements in mass spectrometers for the measurement of small differences in isotope abundance ratios[J].Review of Scientific Instruments,1950, 21(8): 724-730.
[5] Epstein S, Buchsbaum R, Lowenstam H A, et al. Revised carbonate-water isotopic temperature scale[J].Geological Society of America Bulletin,1953, 64(11): 1 315-1 325.
[6] Longinelli A, Nuti S. Revised phosphate-water isotopic temperature scale[J]. Earth and Planetary Science Letters, 1973, 19: 373-376.
[7] Blake R E, Chang S J,  Lepland A. Phosphate oxygen isotopic evidence for a temperate and biologically active Archaean ocean[J].Nature,2010, 464: 1 029-1 032.
[8] Lecuyer C, Grandjean P,  Sheppard S M F. Oxygen isotope exchange between dissolved phosphate and water at temperatures≤135℃: Inorganic versus biological fractionations[J].Geochimica et Cosmochimica Acta,1999, 63(6): 855-862.
[9] O′Neil J R, Vennemann T W,  McKenzie W F. Effects of speciation on equilibrium fractionations and rates of oxygen isotope exchange between (PO4)aq and H2O[J].Geochimica et Cosmochimica Acta,2003, 67(17): 3 135-3 144.
[10] Liang Y H,  Blake R E. Oxygen isotope fractionation between apatite and aqueous-phase phosphate: 20-45℃[J].Chemical Geology,2007, 238(1/2): 121-133.
[11] Young M B, McLaughlin K, Kendall C, et al. Characterizing the oxygen isotopic composition of phosphate sources to aquatic ecosystems[J].Environmental Science & Technology,2009, 43(14): 559-568.
[12] Elsbury K, Paytan A, Ostrom N E, et al. Using oxygen isotopes of phosphate to trace phosphorus sources and cycling in lake Erie[J].Environmental Science & Technology,2009, 43(9): 3 108-3 114.
[13] Paytan A,  McLaughlin K. The oceanic phosphorus cycle[J].Chemical Reviews,2007, 107(2): 563-576.
[14] McLaughlin K, Cade-Menun B J,  Paytan A. The oxygen isotopic composition of phosphate in Elkhorn Slough, California: A tracer for phosphate sources[J].Estuarine, Coastal and Shelf Science,2006, 70(3): 499-506.
[15] McLaughlin K, Kendall C, Silva S R, et al. Phosphate oxygen isotope ratios as a tracer for sources and cycling of phosphate in north San Francisco bay, California[J].Journal of Geophysical Research (Biogeoscience),2006, 111, G03003, doi: 10.1029/2005JG000079.
[16] McLaughlin K, Chavez F, Pennington J T, et al. A time series investigation of the oxygen isotopic composition of dissolved inorganic phosphate in Monterey bay, California[J].Limnology and Oceanography,2006, 51(5): 2 370-2 379.
[17] Colman A S, Blake R E, Karl D M, et al. Marine phosphate oxygen isotopes and organic matter remineralization in the oceans[J].Proceedings of the National Academy of Sciences of the United States of America,2005, 102(37): 13 023-13 028.
[18] Markel D, Kolodny Y, Luz B, et al. Phosphorus cycling and phosphorus sources in lake Kinneret: Tracing by oxygen isotopes in phosphate[J].Israel Journal of Earth Sciences,1994, 43:165-178.
[19] Wan Defang,  Ding Tiping. Determination of oxygen isotopes in the phosphate[J].Bulletin of Mineralogy ,Petrology and Geochemistry,2001, 20(4):448-450.[万德芳,丁悌平. 磷酸盐中的氧同位素测定[J]. 矿物岩石地球化学通报, 2001, 20(4):448-450.]
[20] Zheng Y F. Oxygen isotope fractionations involving apatites: Application to paleotemperature determination[J].Chemical Geology, 1996, 127:177-187.
[21] Ling Hongfei, Jiang Shaoyong, Feng Hongzhen, et al. Oxygen isotope geochemistry of phosphorite and dolomite and palaeoocean temperature estimation: A case study from the Neoproterozoic Doushantuo formation, Guizhou province, south China[J]. Progress in Natural Science,2004, 14(1):77-84.
[22] Blumenthal E, Herbert J B M. Interchange reactions of oxygen. 1. Interchange of oxygen between water and potassium phosphate in solution[J].Transactions of the Faraday Society,1937, 33: 849-852.
[23] Winter E R S, Carlton M,  Briscoe H V A. The interchange of heavy oxygen between water and inorganic oxy-anions[J]. Journal of the Chemical Society (Resumed),1940: 131-138.
[24] Herbert J B M, Blumenthal E. Mechanism of hydrolysis of inorganic esters[J].Nature,1939, 144: 248-248.
[25] Cohn M. Mechanisms of cleavage of glucose-1-phosphate[J].The Journal of Biological Chemistry,1949, 180: 771-781.
[26] Cohn M,  Urey H C. Oxygen isotope exchange reactions of organic compounds and water[J].Journal of the American Chemical Society, 1938, 60: 679-682.
[27] Cohn M. A study of oxidative phosphorylation with 18O-labeled inorganic phosphate[J].Journal of Biological Chemistry, 1953, 201: 735-750.
[28] Cohn M, Drysdale G R. A study with O-18 of adenosine triphosphate formation in oxidative phosphorylation[J].Journal of Biological Chemistry, 1955, 216(2): 831-846.
[29] Williams F R,  Hager L P. Method for determination of oxygen-18 content of inorganic phosphate[J].Science,1958, 128(3 336): 1 434.
[30] Anbar M, Halmann M,  Silver B. Determination of oxygen-18 in Phosphate ion[J].Analytical Chemistry,1960, 32(7) : 841-842.
[31] Tudge A P. A method of analysis of oxygen isotopes in orthophosphateIts use in the measurement of paleotemperatures[J].Geochimica et Cosmochimica Acta, 1960, 18: 81-93.
[32] Longinelli A. Oxygen isotopic composition of orthophosphate from shells of living marine organisms[J].Nature, 1965, 207:716-719.
[33] Longinelli A, Nuti S. Oxygen isotopic ratios in phosphate from fossil marine organisms[J].Science, 1968, 32:879-884.
[34] Longinelli A,  Nuti S. Oxygen isotope measurements of phosphate from fish teeth and bones[J].Earth and Planetary Science Letters, 1973, 20:337-340.
[35] Kolodny Y, Luz B, Navon O. Oxygen isotope variations in phosphate of biogenic apatites I. Fish bone apatite-rechecking the rules of the game[J].Earth and Planetary Science Letters,1983, 64:398-404.
[36] Shemesh A, Kolodny Y, Luz B. Isotope geochemistry of oxygen and carbon in phosphate and carbonate of phosphorite francolite[J].Geochimica et Cosmochimica Acta, 1988, 52: 2 565-2 572.
[37] Shemesh A,Kolodny Y, Luz B. Oxygen isotope variations in phosphate of biogenic apatites, II, Phosphorite rocks[J].Earth and Planetary Science Letters,1983, 64: 405-416.
[38] Karhu J, Epstein S. The implication of the oxygen isotope records in coexisting cherts and phosphates[J].Geochimica et Cosmochimica Acta,1986, 50:1 745-1 756.
[39] Baxter G, Jones G. A revision of the atomic weight of phosphorus. First paper-the analysis of silver phosphate[J].Journal of the American Chemical Society,1910, 32(3): 298-318.
[40] Firsching F H. Precipitation of silver phosphate from homogeneous solution[J].Analytical Chemistry, 1961, 33:873-874.
[41] Wright E K,  Hoering T C. Separation and purification of phosphates for oxygen isotope analysis[J].Annual Report of the Geophysical Laboratory, Carnegie Institute, Washington DC 1988—1989, 1989, 2 150:137-141.
[42] Crowson R A, Showers W J, Wright E K, et al. Preparation of phosphate samples for oxygen isotope analysis[J].Analytical Chemistry,1991, 63:2 397-2 400.
[43] O′Neil J R, Roe L J, Reinhard E, et al. A rapid and precise method of oxygen isotope analysis of biogenic phosphate[J]. Israel Journal of Earth Sciences,1994, 43: 203-212.
[44] Blake R E, O′Neil J R,  Garcia G A. Oxygen isotope systematics of biologically mediated reactions of phosphate: I. Microbial degradation of organophosphorus compounds[J].Geochimica et Cosmochimica Acta, 1997, 61: 4 411-4 422.
[45] Blake R E, O′Neil J R,  Garcia G A. Effects of microbial activity on the δ18O of dissolved inorganic phosphate and textural features of synthetic apatite[J].American Mineralogist,1998, 83:1 516-1 531.
[46] Blake R E, Alt J C,  Martini A M. Oxygen isotope ratios of PO4: An inorganic indicator of enzymatic activity and P metabolism and a new biomarker in the search for life[J].Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(5): 2 148-2 153.
[47] Stuart-Williams H L Q, Schwarcz H P. Oxygen isotopic analysis of silver orthophosphate using a reaction with bromine[J]. Geochimica et Cosmochimica Acta, 1995, 59:3 837-3 841.
[48] Holmden C,Papanastassiou D A, Wasserburg G J. Negative thermal ion mass spectrometry of oxygen in phosphates[J]. Geochimica et Cosmochimica Acta,1997, 61: 2 253-2 263.
[49] Kornexl B E, Gehre M, Hofling R,et al. On-line δ18O measurement of organic and inorganic substances[J].Rapid Communications in Mass Spectrometry,1999, 13:1 685-1 693.
[50] Wenzel B, Lecuyer C,  Joachimski M. Comparing oxygen isotope records of silurian calcite and phosphate18O compositions of brachiopods and conodonts[J].Geochimica et Cosmochimica Acta,2000, 64(11): 1 859-1 872.
[51] Vennemann T W, Fricke H C, Blake R E, et al. Oxygen isotope analysis of phosphates: A comparison of techniques for analysis of Ag3PO4[J].Chemical  Geology,2002, 185: 321-336.
[52] Gruau G, Legeas M, Riou C, et al. The oxygen isotopic composition of dissolved anthropogenic phosphates: A new tool for eutrophication research?[J].Water Research,2005, 39(1): 232-238.
[53] Blake R E, O′Neil J R, Surkov A. Biogeochemical cycling of phosphorus: Insights from oxygen isotope effects of phosphoenzymes[J]. American Journal of Science,2005, 305(6/8): 596-620.
[54] Paytan A, Kolodny Y, Neori A, et al. Rapid biologically mediated oxygen isotope exchange between water and phosphate[J]. Global Biogeochemical Cycles,2002, 16(1):8.
[55] McLaughlin K, Silva S, Kendall C, et al. A precise method for the analysis of δ18O of dissolved inorganic phosphate in seawater[J].Limnology and Oceanography, Methods,2004, 2: 202-212.
[56] McLaughlin K. The Oxygen Isotopic Composition of Phosphate in Marine and Estuarine Systems: A Tracer for Phosphate Sources and Cycling[D]. Stanford University, Stanford, California,2005.
[57] Kohn M J, Schoeninger M J, Valley J W. Herbivore tooth oxygen isotope compositions: Effects of diet and physiology[J]. Geochimica et Cosmochimica Acta,1996, 60: 3 889-3 896.
[58] Jones A M, Iacumin P, Young E D. High-resolution δ18O analysis of tooth enamel phosphate by isotope ratio monitoring gas chromatography mass spectrometry and ultraviolet laser fluorination[J].Chemical Geology,1999, 153: 241-248.
[59] Cerling T E, Sharp Z D. Stable carbon and oxygen isotope analysis of fossil tooth enamel using laser ablation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,1996, 126: 173-186.
[60] Longinelli A, Bartelloni M,  Cortecci G. The isotopic cycle of oceanic phosphate[J].Earth and Planetary Science Letters, 1976, 32: 392-398.
[61] Colman A S. The Oxygen Isotope Composition of Dissolved Inorganic Phosphate and the Marine Phosphorus Cycle[D].Yale University, 2002.
[62] Liang Y. Oxygen Isotope Studies of Biogeochemical Cycling of Phosphorus[D]. Yale University New Haven, 2005.
[63] Lecuyer C, Grandjean P, Emig C C. Determination of oxygen isotope fractionation between water and phosphate from living lingulids: Potential application to paleoenvironmental studies[J].Palaeogeography, Palaeoclimatology, Palaeoecology,1996, 126: 101-108.

[1] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[2] 宗秀兰, 宋友桂, 李越. 蚯蚓方解石颗粒——一种新的古气候信息记录载体[J]. 地球科学进展, 2018, 33(9): 983-993.
[3] 谷洪彪, 迟宝明, 王贺, 张耀文, 王明远. 柳江盆地地表水与地下水转化关系的氢氧稳定同位素和水化学证据[J]. 地球科学进展, 2017, 32(8): 789-799.
[4] 刘轶男, 孙凤霞, 崔月菊, 盘晓东, 马铭志, 张昕, 杜建国. 吉林省松原地区地震监测台站水化学特征[J]. 地球科学进展, 2017, 32(8): 810-817.
[5] 贺娟. 氢氧同位素记录揭示的巽他陆架末次冰期以来古降水量变化[J]. 地球科学进展, 2017, 32(11): 1137-1146.
[6] 李悦, 王汝建, 李文宝. 利用有孔虫氧同位素重建古海平面变化的研究进展[J]. 地球科学进展, 2016, 31(3): 310-319.
[7] 洪义国. 硝酸盐氮氧稳定同位素分馏过程记录的海洋氮循环研究进展[J]. 地球科学进展, 2013, 28(7): 751-764.
[8] 杨志,陈敏. 海水硝酸盐氮、氧同位素组成研究进展[J]. 地球科学进展, 2012, 27(3): 268-275.
[9] 李琪,李前裕,王汝建. 20万年来南海古海洋研究的主要进展[J]. 地球科学进展, 2012, 27(2): 224-239.
[10] 陈友良,魏 佳,叶永钦,宋 昊, 孙泽轩. 若尔盖铀矿田方解石稀土元素与碳氧同位素地球化学特征及其意义[J]. 地球科学进展, 2012, 27(10): 1061-1067.
[11] 张翠云,张俊霞,马琳娜,张胜,殷密英,李政红. 硝酸盐氮氧同位素反硝化细菌法测试研究[J]. 地球科学进展, 2010, 25(4): 360-364.
[12] 杨红梅,王成善. 古高程计:氢氧同位素的新应用[J]. 地球科学进展, 2007, 22(9): 960-968.
[13] 邓林,曹玉清,王文科. 地下水NO - 3氮与氧同位素研究进展[J]. 地球科学进展, 2007, 22(7): 716-724.
[14] 陈法锦,李学辉,贾国东. 氮氧同位素在河流硝酸盐研究中的应用[J]. 地球科学进展, 2007, 22(12): 1251-1257.
[15] 李前裕,汪品先,陈木宏,郑范,王汝建,孙湘君,刘传联,成鑫荣,翦知湣. 中更新世气候转型时期南海生态环境的南北差异[J]. 地球科学进展, 2006, 21(8): 781-792.
阅读次数
全文


摘要