地球科学进展 ›› 2007, Vol. 22 ›› Issue (9): 960 -968. doi: 10.11867/j.issn.1001-8166.2007.09.0960

综述与评述 上一篇    下一篇

古高程计:氢氧同位素的新应用
杨红梅,王成善   
  1. 中国地质大学地球科学与资源学院,北京100083
  • 收稿日期:2007-03-30 修回日期:2007-07-23 出版日期:2007-09-15
  • 通讯作者: 杨红梅(1977-),女,河北唐山人,博士研究生,从事化学地层学与古环境学的研究.E-mail:yanghongmei77@163.com E-mail:yanghongmei77@163.com
  • 基金资助:

    国家重点基础研究发展计划项目“白垩纪地球表层系统重大地质事件与温室气候变化”(编号:2006CB701400)资助.

Paleohypsometry: New Application of Hydrogen Isotope and Oxygen Isotope

YANG Hong-mei, WANG Cheng-shan   

  1. China University of Geosciences,School of Earth Sciences and Resources, Beijing 100083, China
  • Received:2007-03-30 Revised:2007-07-23 Online:2007-09-15 Published:2007-09-10

定量恢复高大地形的古高程是地质学家一直以来追求的目标,将自生矿物中氢氧同位素用作古高程计的历史不长,这种方法还有很大的应用潜力,可用到比新生代更古老的时期。根据与气团上升和水汽凝结的热动力学性质相关的瑞利平衡分馏原理,建立了这种古高程计的热动力模型,这个模型应用简便,适用于纬度小于35°的地区。区域性经验关系的方法误差较小,但也有计算繁琐、适用区域有限的不足。以上两种方法的计算精度均有待于提高。研究中使用方解石作为样品最普遍,在方解石、高岭石、蒙脱石和针铁石等矿物中,究竟使用哪种推算古高程产生的误差更小,还需进一步研究。

Quantitative Estimation of paleoaltitude is the objective that geologistes have always sought.The research history of paleohypsometry which uses oxygen and hydrogen isotopic composition of authigenic mineral is overviewed. This method has much more potential to be applied to older periods than Cenozonic. According to equilibrium fractionation during Rayleigh distillation linked to the thermodynamics of atmospheric ascent and water vapor condensation, thermodynamics model has been established. The model is a kind of simple and convenient calculational method,which can be used for relatively low latitude(≤35°) area. Regional experiencial relationship method is not simple and has limited application region, but the error of this method is relatively little. Both of the two methods mentioned above need precision enhancement. Calcite, smectite,goethite and kaolinite has been used as mineral proxies in the past researches.Calcite has been used as mineral proxy most frequently. However,it is not certain which mineral can produce the least error of predicted paleoaltitude.

中图分类号: 

[1]Li Jijun,Wen Shixuan,Zhang Qingsong,et al. A discussion on Time, amplitude and type of the Qinghai-Tibet plateau[J].Science in China(Series B),1979,9(6):608-616.[李吉均,文世宣,张青松,等.青藏高原隆升的时代、幅度和形式探讨[J].中国科学:B辑,1979,9(6):608-616.]
[2]Quade J, Cerling T E, Bowman J R. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan[J].Nature,1989,342:163-166.
[3]Raymo M F, Ruddiman W F. Tectonic forcing of late Cenozoic ulimate[J]. Nature,1992,359: 117-122.
[4]Edmonds J. Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones[J].Science,1992 ,258: 1 594-1 597.
[5]Prell W L, Kutzbach J E. Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution[J]. Nature, 1992,360 :647-652.
[6]Richter F, Rowley D B, DePaolo D J. Sr isotope evolution of seawater the role of tectonics[J].Earth and Planet Science Letter,1992,109 :11-23. 
[7]Derry L A, France-Lanord C. Neogene Himalayan weathering history and river 87Sr/86Sr: Impact on the marine Sr record[J].Earth and Planet Science Letter,1996,142:59-74.
[8]Ramstein G, Fluteau F,Besse J, et al. Effects of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years[J].Nature,1997,386:788-795.
[9]Ruddiman W. Early uplift in Tibet?[J].Nature,1998,394:723-725.
[10]An Z, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times[J].Nature, 2001,411:62-66.
[11]Guo Z T, Ruddiman W F, Hao Q Z, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J]. Nature, 2002,416:159-163.
[12]England P, Housemann G. Finite strain calculations of continental deformation Ⅱ: Application to the India-Asia plate collision[J].Journal Geophysical Research,1986,91:3 664-3 676.
[13]Harrison T M, Copeland P, Kidd W S F,et al. Raising Tibet[J].Science,1992,255:1 663-1 670.
[14]Molnar P, England P, Martinod J. Mantle dynamics, uplift of the Tibetan plateau, and the Indian Monsoon[J]. Review Geophysics,1993,31:357-396.
[15]Royden L H, Burchfiel B C, King K W, et al. Surface deformation and lower crustal flow in eastern Tibet[J].Science,1997,276: 788-790.
[16]Tapponnier P, Xu Zhiqin, Roger F, et al. Oblique stepwise rise and growth of the Tibet plateau[J].Science,2001,294:1 671-1 677.
[17]Beaumont C, Jamieson R A, Nguyen M H, et al. Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogen[J]. Geophysical Research,2004,109, B06406, doi:10:1029/2003JB002809.
[18]Rowley D B,Currie B S.Paleoaltimetry of the late Eoene to Miocene unpola basin,central Tibet[J].Nature,2006,439:677-681.
[19]Mulch A, Graham S A, Chamberlain C P. Hydrogen isotopes in Eocene River Gravels and paleoelevation of the sierra nevada[J].Science,2006,313:87-89.
[20]Forest C E, Emanuel K A, Molnar P,et al. Paleoaltimetry incorporating atmospheric physics and botanical estimates of paleoclimate[J].Geology Society of America Bulletin,1999,111:497-511. 
[21]Spicer R A, Harris N B W, Widdowson M, et al. Constant elevation of southern Tibet over the past 15 million years[J].Nature,2003,421:622-624 .
[22]Sahagian D L, Maus J E. Basalt vesicularity as a measure of atmospheric pressure and paleoelevation[J].Nature,1994,372:449-551.
[23]Drummond C N,Wilkinson B H,Lohmam K C,et al.Effect of regional topography and hydrology on the lacustrine isotopic record of Miocene paleoclimate in the Rocky Mountains[J].Palaeogeography,Palaeoclimatoloty,Palaeoecology,1993,101:67-79.
[24]Chamberlain C P, Poage M A. Reconstructing the paleotopography of mountain belts from the isotopic composition of authigenic minerals[J].Geology,2000,28:115-118.
[25]Dettman D L, Lohmann K. Oxygen isotope evidence for high-altitude snow in the Laramide Rocky Mountains of North America during the Late Cretaceous and Paleogene[J].Geology,2000,28:243-246.
[26]Garzione C N, Quade J, DeCelles P G, et al. Predicting paleoelevation of Tibet and the Himalaya from δ18O  vs altitude gradients in meteoric water across the Nepal Himalaya[J].Earth and Planet Science Letter,2000,183:215-229.
[27]Poage M A, Chamberlain C P. Empirial relationship between elevation and the stable isotope composition of precipitation: Considerations for studies of paleoelevation change[J].America Journal of Science (in review),2001,301:1-15.
[28]Poage M A, Chamberlain C P. Stable isotopic evidence for a pre-Middle Miocene rain shadow  in the western Basin and Range: Implications for the surface uplift of the Sierra Nevada[J].Tectonics,2002,21:16-1-16-10.
[29]Kohn M J, Miselis J L, Fremd T J.Oxygen isotope evidence for progressive uplift of the Cascade Range, Oregon[J].Earth and Planet Science Letter,2002,204:151-165.
[30]Dettman D L,Fang X M, Garzione C N. Uplift-driven climate change at 12Ma: A long δ18O record from the NE margin of the Tibetan Plateau[J].Earth and Planet Science Letter,2003,214:267-277.
[31]Cyr A J, Currie B S, Rowley D B. ochemical and stable isotopic evaluation of fenghuoshan Group lacustrine carbonates, north-central Tibet:Implications for the paleoaltimetry of Late Eocene Tibetan Plateau [J].Geology,2005,113:517-533.
[32]Takeuchi A, Larson P B. Oxygen isotope evidence for the late Cenozoic development of an orographic rain shadow in eastern Washington[J].Geology,2005,33:313-316.
[33]Garzione C N,Molnar P, Libarkin J C, et al. Rapid late Miocene rise of the Bolivian Altiplano: Evidence for removal of mantle lithosphere[J].Earth and Planet Science Letters,2006,241:543-556.
[34]Rowley D B, Garzione C N. Stable isotopic-based paleoaltimetry[J].The Annual Review of Earth and Planetary Sciences,2007,35:463-508.
[35]Urey H C. The thermodynamic properties of isotopic substances[J].Journal of the Chemical Society(London),1947:562-581.
[36]Benson L V, White L D, Rye R. Carbonate deposition, Pyramid Lake Subbasin, Nevada:Comparison of the stable isotope values of carbonate deposits (tufas) and the Labontan lake-level record[J].Palaeogeography, Palaeoclimatology, Palaeoecology,1996,122:45-76. 
[37]Teranes J L, McKenzie J A, Bernasconi S M, et al. A study of isotopic fractionation during bio-induced calcite precipitation in eutrophic Baldeggersee[J].Geochimica et Cosmochimica Acta,1999,63:1 981-1 989.
[38]Dansgaard W. Stable isotopes in precipitation[J].Tellus,1964,16:436-468.
[39]Ambach W, Dansgaard W, Eisner H, et al. The altitude e ect on the isotopic composition of precipitation and glacier ice in the Alps[J].Tellus,1968,20:595-600.
[40]Joussaume J,Sadourny R,Jouzel J A.General circulation model of water isotopes in the atmosphere[J].Nature,1984,311:24-29.
[41]IAEA. Statistical Treatment of Data on Environmental Isotopes in Precipitation[C]//International Atomic Energy Agency. Vienna, 1992.
[42]Chamberlain C P, Poage M A,Craw D, et al. Topographic development of the southern Alps recorded by the isotopic composition of authigenic clay minerals, South Island, New Zealand[J].Chemical Geology,1999,155:279-294.
[43]Currie B S, Rowley D B, Tabor N J. Middle Miocene paleoaltimetry of southern Tibet: Implications for the role of mantle thickening and delamination in the Himalayan orogen[J].Geology,2005,33:181-184.
[44]Graham S A,Chamberlain P C,Yue Y J,et al.Stable isotope records of Cenozoic climate and topography, Tibetan plateau and Tarim basin[J].American Journal of Science,2005,305:101-118.
[45]Rowley D B, Pierrehumbert R T, Currie B S.A new approach to stable isotope-based paleoaltimetry: Implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene[J].Earth and Planet Science Letter,2001,188:253-268.
[46]Cyr A J. Geochemical and stable isotopic evaluation of Fenghuoshan Group lacustrine carbonates,north-central Tibet: Implications for the paleoaltimetry of the mid-Tertiary Tibetan Plateau[D]. Oxford OH:Miami University, 2004.
[47]Turner J V, Fritz P, Karrow P F, et al. Isotopic and geochemical composition of marl lake waters and implications for radio carbon dating of marl lake sediments[J].Canada Journal of Earth Science,1983,20:599-615. 
[48]McKenzie J A. Carbon Isotopes and Productivity in the Lacustrine and Marine Environment[C]//Stumm W,ed. Chemical Processes in Lakes.New York:Wiley,1985:99-118.
[49]Fritz P, Morgan A V, Eicher U, et al. Stable isotope, fossil coleoptera and pollen stratigraphy in Late Quaternary sediments from Ontario and New York state[J].Palaeogeography, Palaeoclimatology, Palaeoecology,1987,58:183-202.
[50]Gasse F, Fontes J C. Paleoenvironments and paleohydrology of a tropical closed lake (Lake Asal, Djibouti) since 10 000 yr BP[J].Palaeogeography, Palaeoclimatology, Palaeoecology,1987,69:67-102.
[51]Talbot M R. 1990. A review of the paleohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates[J].Chemical Geology,1990, 80:261-279.
[52]Drummond C N. Climatic control of fluvial-lacustrine cyclicity in the Cretaceous Cordilleran foreland basin, western United States [J].Sedimentology,1996, 43:677-689.
[53]Kalnay E, Kanamitsu M, Kistler R, et al. The NCEP/NCAR 40-year reanalysis project[J].Bulletin of the America Meteorology Society,1996, 77:437- 471.
[54]Friedman I,O'Neil J R.Compilation of stable isotope fractionation factors of geochemical interest[C]//Fleischer M,ed.Data of geochemistry,US Geology Survey Professor Paper,1977.
[55]Garzione C N, Dettman D L, Horton B K. Carbonate oxygen isotope paleoaltimetry: Evaluating the effect of diagenesis on paleoelevation estimates for the Tibetan Plateau[J].Palaeogeogragy, Palaeoclimatology, Palaeolecology,2004, 212:119-140.
[56]Ghosh P, Garzione C N, Eiler J M. Rapid uplift of the Altiplano revealed in 13C-18O bonds in paleosol carbonates[J].Science,2006,311:511-515.

[1] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[2] 梁承弘, 鹿化煜. 风成沉积物叶蜡氢同位素在揭示东亚季风区干湿变化中的原理及应用[J]. 地球科学进展, 2021, 36(1): 45-57.
[3] 宗秀兰, 宋友桂, 李越. 蚯蚓方解石颗粒——一种新的古气候信息记录载体[J]. 地球科学进展, 2018, 33(9): 983-993.
[4] 谷洪彪, 迟宝明, 王贺, 张耀文, 王明远. 柳江盆地地表水与地下水转化关系的氢氧稳定同位素和水化学证据[J]. 地球科学进展, 2017, 32(8): 789-799.
[5] 刘轶男, 孙凤霞, 崔月菊, 盘晓东, 马铭志, 张昕, 杜建国. 吉林省松原地区地震监测台站水化学特征[J]. 地球科学进展, 2017, 32(8): 810-817.
[6] 贺娟. 氢氧同位素记录揭示的巽他陆架末次冰期以来古降水量变化[J]. 地球科学进展, 2017, 32(11): 1137-1146.
[7] 林杰, 庄广胜, 王成善, 戴紧根. 叶蜡单体氢同位素古高程计研究进展[J]. 地球科学进展, 2016, 31(9): 894-906.
[8] 李悦, 王汝建, 李文宝. 利用有孔虫氧同位素重建古海平面变化的研究进展[J]. 地球科学进展, 2016, 31(3): 310-319.
[9] 袁子能,邢磊,张海龙,赵美训. 生物标志物稳定氢同位素研究进展及在海洋古环境重建中的应用[J]. 地球科学进展, 2012, 27(3): 276-283.
[10] 杨志,陈敏. 海水硝酸盐氮、氧同位素组成研究进展[J]. 地球科学进展, 2012, 27(3): 268-275.
[11] 李琪,李前裕,王汝建. 20万年来南海古海洋研究的主要进展[J]. 地球科学进展, 2012, 27(2): 224-239.
[12] 陈友良,魏 佳,叶永钦,宋 昊, 孙泽轩. 若尔盖铀矿田方解石稀土元素与碳氧同位素地球化学特征及其意义[J]. 地球科学进展, 2012, 27(10): 1061-1067.
[13] 张翠云,张俊霞,马琳娜,张胜,殷密英,李政红. 硝酸盐氮氧同位素反硝化细菌法测试研究[J]. 地球科学进展, 2010, 25(4): 360-364.
[14] 陈志刚,黄奕普,刘广山,蔡毅华,卢阳阳,刘润. 磷酸盐氧同位素组成的测定方法及分馏机理研究进展[J]. 地球科学进展, 2010, 25(10): 1040-1050.
[15] 张杰,贾国东. 植物正构烷烃及其单体氢同位素在古环境研究中的应用[J]. 地球科学进展, 2009, 24(8): 874-881.
阅读次数
全文


摘要