地球科学进展 ›› 2009, Vol. 24 ›› Issue (8): 874 -881. doi: 10.11867/j.issn.1001-8166.2009.08.0874

综述与评述 上一篇    下一篇

植物正构烷烃及其单体氢同位素在古环境研究中的应用
张杰 1,2,贾国东 1   
  1. 1.中国科学院广州地球化学研究所边缘海地质重点实验室,广东  广州  510640; 2.中国科学院研究生院,北京  100049
  • 收稿日期:2009-01-12 修回日期:2009-05-29 出版日期:2009-08-10
  • 通讯作者: 张杰 E-mail:zhangjie2218@yahoo.com.cn

Application of Plant-derived n-Alkanes and Their Compound-specific Hydrogen Isotopic Composition in Paleoenvironment Research

Zhang Jie 1,2, Jia Guodong 1   

  1. 1.Key Laboratory of Marginal Sea Geology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences,Guangzhou  510640, China;  2.Graduate University of the Chinese Academy of Sciences, Beijing  100049, China
  • Received:2009-01-12 Revised:2009-05-29 Online:2009-08-10 Published:2009-08-10

正构烷烃是植物类脂的重要组成部分,主要用来维持叶片表面的水分平衡,其平均碳链长度(ACL)作为植物对水分胁迫程度的生理性反映,与植物进化程度存在表观上的联系。高等植物来源烷烃的ACL高于低等植物和水生藻类,裸子植物高于被子植物,C4植物高于C3植物,因此植物正构烷烃具备粗略的植物分类学意义,并在古环境研究中被广泛应用。在河口和海洋沉积物中主要用来判断水生低等植物和陆地高等植物的相对贡献,在古土壤中则用来区分草本/木本植物的消长变化。植物烷烃中的氢元素主要来自光合作用时吸收的环境水,其δD主要受环境条件和生物化学过程影响,但环境条件、气候状况和植被类型的影响可以在很大程度上相互抵消,使烷烃δD具有记录大气降水δD的潜力,从而可以用来重建大气降水δD并反演气候变化。

n-Alkanes are an important part of epicuticular leaf lipids, which are principally used to keep water balance of plant leaf surface. Their average carbon chain length (ACL), as the physiological response of plants to environmental water stress, is proposed to be related to the evolution of plants. The ACL of higher plant-derived n-alkanes is longer than that of lower plants and aquatic algae, so are those of gymnosperm than angiosperm and C4 than C3 plants, suggesting the implications of n-alkanes for rough classification of plants. Therefore, the ACL of n-alkanes has been applied intensively in paleoenvironment research to investigate the relative contributions of aquatic vs. land plants in sediments and of herbaceous vs. woody plants in paleosols. Hydrogen of higher plant-derived n-alkanes is initially taken from water during photosynthesis and its isotopic composition is mainly affected by environmental conditions and biochemical processes. However, the influences from environmental change have been found to be largely compensated by those from the concurrent vegetation shift, making higher plant-derived n-alkane δD have the potential to record meteoric water δD, and hence useful for paleogydrology studies.

中图分类号: 

[1] Eglinton G, Hamilton R G. Leaf epicuticular waxes[J].Science,1967,156:1 322-1 335.
[2] Meinschein W, Barghoorn E S, Schopf J W. Biological remnants in a precambrian sediment[J].Science,1964,145:262-263.
[3] Hayes J M, Freeman K H, Popp B N, et al. Compound-specific isotopic analyses: A novel tool for reconstruction of ancient biogeochemical processes[J].Organic Geochemistry,1990,16:1 115-1 128.
[4] Ni Yu, Guo Yanjun. Progress in the study on genes encoding enzymes involved in biosynthesis of very long chain fatty acids and cuticular wax in plants[J].Hereditas,2008,30(5):561-567.[倪郁,郭彦军.植物超长链脂肪酸及角质层蜡质生物合成相关酶基因研究现状[J].遗传,2008,30(5):561-567.]
[5] Shepherd T, Griffiths D W. The effects of stress on plant cuticular waxes[J].New Phytologist,2006, 171(3):469-499.
[6] Millar A A, Clemens S, Zachgo S, et al. An arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme[J].The Plant Cell,1999, 11:825-838.
[7] Sessions A L, Burgoyne T W, Schimmelmann A, et al. Fractionation of hydrogen isotopes in lipid biosynthesis[J].Organic Geochemistry,1999, 30(9):1 193-1 200.
[8] Dodd R S, Afzal-Rafii Z A. Habitat-related adaptive properties of plant cuticular lipids[J].Evolution,2000, 54(4):1 438-1 444.
[9] Dodd R S, Poveda M M. Environmental gradients and population divergence contribute to variation in cuticular wax composition in Juniperus communis[J].Biochemical Systematics and Ecology,2003, 31(11):1 257-1 270.
[10] Hauke V, Scheriber L. Ontogenetic and seasonal development of wax composition and cuticular transpiration of ivy (Hedera helix L.) sun and shade leaves[J].Planta,1998, 207: 67-75.
[11] Dodd R S, AfzalRafii Z, Power A B. Ecotypic adaptation in Austrocedrus chilensis in cuticular hydrocarbon composition[J]. The New Phytologist,1998, 138(4): 699-708.
[12] Gagosian R B, Peltzer E T. The importance of atmospheric input of terrestrial organic material to deep sea sediments[J]. Organic Geochemistry,1986, 10(4/6):661-669.
[13] Simoneit B R T, Sheng G Y, Fu J M, et al. Molecular marker of extractable organic matter in aerosols from urban areas of China[J].Atomosphere Environment, 1991, 25A:2 111-2 129.
[14] Schefu E, Ratmeyer V, Stuut J B W, et al. Carbon isotope analyses of n-alkanes in dust from the lower atmosphere over the central eastern Atlantic[J].Geochimica et Cosmochimica Acta,2003, 67(10):1 757-1 767.
[15] Sicre M A, Peltzer E T. Lipid geochemistry of remote aerosols from the southwestern Pacific Ocean sector[J].Atmospheric Environment,2004, 38(11):1 615-1 624.
[16] Sachse D, Radke J, Gleixner G. δD values of individual n-alkanes from terrestrial plants along a climatic gradient—Implications for the sedimentary biomarker record[J].Organic Geochemistry,2006, 37(4):469-483.
[17] Gelpi E, Schneider H, Mann J, et al. Hydrocarbons of geochemical significance in microscopic algae[J].Phytochemistry,1970, 9(3): 603-612.
[18] Corrigan D, Kloos C, O′Connor C S, et al. Alkanes from four species of Sphagnum moss[J].Phytochemistry,1973, 12(1):213-214.
[19] Ficken K J, Barber K E, Eglinton G. Lipid biomarker, δ3C and plant macrofossil stratigraphy of a Scottish montane peat bog over the last two millennia[J].Organic Geochemistry,1998, 28: 217-237.
[20] Nott C J, Xie S C, Avsejs L A, et al. N-alkane distributions in ombrotrophic mires as indicators of vegetation change related to climatic variation[J].Organic Geochemistry,2000,31:231-235.
[21] Cranwell P A. Chain-length distribution of n-alkanes from lake sediments in relation to postglacial environmental change[J]. Freshwater Biology,1973,3(3):259-265.
[22] Schwark L, Zink K, Lechterbeck J. Reconstruction of postglacial to early Holocene vegetation history in terrestrial Central Europe via cuticular lipid biomarkers and pollen records from lake sediments[J].Geology,2002,30:463-466.
[23] Sage R F. Evironmental and evolutionary preconditions for the origin and diversification of the C4 photosynthetic syndrome[J].Plant Biology,2001,3(3):202-213.
[24] Boom A, Marchant R, Hooghiemstra H, et al. CO2-and temperature-controlled altitudinal shifts of C4- and C3-dominated grasslands allow reconstruction of palaeoatmospheric pCO2[J].Palaeogeography, Palaeoclimatology, Palaeoecology,2002, 177: 151-168.
[25] Hughen K, Eglinton T I, Li X, et al. Abrupt tropical vegetation response to rapid climate changes[J].Science,2004,304:1 955-1 959.
[26] Rommerskirchen F, Eglinton G, Dupont L, et al. A north to south transect of Holocene southeast Atlantic continental margin sediments: Relationship between aerosol transport and compoundspecific δ13C land plant biomarker and pollen records[J]. Geochemistry Geophysics Geosystems,2003, 4,doi:10.1029/2003GC000541.
[27] Freeman K H, Colarusso L A. Molecular and isotopic records of C4 grassland expansion in the late Miocene[J].Geochimica et Cosmochimica Acta,2001, 65(9):1 439-1 454.
[28] Ficken K J, Li B, Swain D L, et al. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes[J].Organic Geochemistry,2000,31:745-749.
[29] Lerman A. Lakes: Chemistry, geology, physics[C]//Barnes M A, Barnes W C. Organic Compounds in Lake Sediments. Berlin: Springer-Verlag,1978:127-152.
[30] Farrimond P, Flanagan L R. Lipid stratigraphy of a Flandrian peat bed (Northumberland, UK): Comparison with the pollen record[J].The Holocene,1996,6:69-74.
[31] Xie S C, Nott C J, Avsejs L A, et al. Molecular and isotopic stratigraphy in an ombrotrophic mire for paleoclimate reconstruction[J].Geochimica et Cosmochimica Acta,2004,68(13):2 849-2 862.
[32] Zheng Y H, Zhou W J, Meyers P A, et al. Lipid biomarkers in the Zoigê-Hongyuan peat deposit: Indicators of Holocene climate changes in West China[J].Organic Geochemistry,2007,38(11):1 927-1 940.
[33] Xie Shucheng, Wang Zhiyuan, Wang Hongmei, et al. The occurrence of a grassy vegetation over the Chinese Loess plateau since the last inter-glacier: The molecular fossil record[J].Science in China(Series D),2002,32(1):28-35.[谢树成,王志远,王红梅,等.末次间冰期以来黄土高原的草原植被景观:来自分子化石的证据[J].中国科学:D辑,2002,32(1):28-35.]
[34] Liang Bin, Xie Shucheng, Gu Yansheng, et al. Distribution of n-alkanes as indicative of paleovegetation change in Pleistocene red earth Xuancheng, Anhui[J].Earth Science—Journal of China University of Geosciences,2005,30(2):129-132.[梁斌,谢树成,顾延生,等.安徽宣城更新世红土正构烷烃分布特征及其古植被意义[J].地球科学——中国地质大学学报,2005,30(2):129-132.]
[35] Xie Shucheng, Yi Yi, Liu Yuyan, et al. The Pleistocene vermicular red earth in North China signaling the global climate change: The molecular fossil recor[J].Science in China (Series D),2003, 33(5):411-417.[谢树成,易轶,刘育燕,等.中国南方更新世网纹红土对全球气候变化的响应:分子化石记录[J]. 中国科学:D辑,2003,33(5):411-417.]
[36] Wu Weihua. Plant Physiology\[M\]. Beijing: Science Press,2003.[武维华. 植物生理学[M].北京:科学出版社,2003.]
[37] Luo Y H, Steinberg L, Suda S, et al. Extremely low D/H ratios of photoproduced hydrogen by cyanobacteria[J].Plant & Cell Physiology,1991,32:897-900.
[38] Yakir D. Variations in the natural abundance of oxygen-18 and deuterium in plant carbohydrates[J].Plant, Cell and Environment,1992,15(9):1 005-1 020.
[39] Estep M F, Hoering T C. Biogeochemistry of the stable hydrogen isotopes[J].Geochimica et Cosmochimica Acta,1980,44(8):1 197-1 206.
[40] Rundel P W, Ehleringer J R, Nagy K A. Stable isotopes in ecological research[C]//White J W C. Stable Hydrogen Isotope Ratios in Plants: A Review of Current Theory and Some Potential Applications. Berlin: Springer,1989:142-162.
[41] Schmidt H L, Werner R A, Eisenreich W. Systematics of 2H patterns in natural compounds and its importance for the elucidation of biosynthetic pathways[J].Phytochemistry Reviews,2003,2:61-85.
[42] Hayes J M. Fractionation of the isotopes of Carbon and Hydrogen in biosynthetic processes[C]//National Meeting of the Geological Society of America. Boston: Mineralogical Society of America,2001.
[43] Schmidt H L, Werner R A,  Eisenreich W.  Systematics of 2H patterns in natural compounds and its importance for the elucidation of biosynthetic pathways[J].Phytochemistry Reviews,2003,2:61-85.
[44] Sessions A L. Seasonal changes in D/H fractionation accompanying lipid biosynthesis in Spartina alterniflora[J].Geochimica et Cosmochimica Acta,2006,70(9):2 153-2 162.
[45] Sachse D, Radke J, Gleixner G. Hydrogen isotope ratios of recent lacustrine sedimentary n-alkanes record modern climate variability[J].Geochimica et Cosmochimica Acta,2004,68(23):4 877-4 889.
[46] Smith F A, Pedentchouk N, Freeman K H. Hydrogen Isotope Ratios of Lipid Biomarkers (n-alkanes) as Paleohydrologic Proxies: Aquatic vs. Terrestrial Archives[R]. France: EGS-AGU-EUG Joint Assembly, Abstracts from the meeting held in Nice,2003.[47] Graham D F, Lucas A C, Belinda B. Heavy water fractionation during transpiration[J].Plant Physiology,2007,143:11-18.
[48] Roden J S, Ehleringer J R. Hydrogen and oxygen isotope ratios of tree-ring cellulose for riparian trees grown long-term under hydroponically controlled environments[J].Oecologia,1999,121:467-477.
[49] Roden J S, Ehleringer J R. Hydrogen and oxygen isotope ratios of tree ring cellulose for field-grown riparian trees[J].Oecologia,2000, 123: 481-489.
[50] Bi X, Sheng G, Liu X, et al. Molecular and carbon and hydrogen isotopic composition of n-alkanes in plant leaf waxes[J]. Organic Geochemistry,2005,36(10):1 405-1 417.
[51] Smith F A, Freeman K H. Influence of physiology and climate on δD of leaf wax n-alkanes from C3 and C4 grasses[J]. Geochimica et Cosmochimica Acta,2006,70(5):1 172-1 187.
[52] Chikaraishi Y, Naraoka H, Poulson S R. Hydrogen and carbon isotopic fractionations of lipid biosynthesis among terrestrial (C3, C4 and CAM) and aquatic plants[J].Phytochemistry,2004,65(10):1 369-1 381.
[53] Liu W, Huang Y. Compound specific D/H ratios and molecular distributions of higher plant leaf waxes as novel paleoenvironmental indicators in the Chinese Loess Plateau[J].Organic Geochemistry,2005,36(6):851-860.
[54] Hou J Z, D′Andrea W J, MacDonald D, et al. Hydrogen isotopic variability in leaf waxes among terrestrial and aquatic plants around Blood Pond, Massachusetts (USA)[J].Organic Geochemistry,2007,38(6):977-984.
[55] Pedentchouk N, Sumner W, Tipple B, et al. δ13C and δD compositions of n-alkanes from modern angiosperms and conifers: an experimental set up in central Washington State, USA[J].Organic Geochemistry,2008,39(8):1 066-1 071.
[56] Hou J, D′Andrea W J, MacDonald D, et al. Evidence for water use efficiency as an important factor in determining the δD values of tree leaf waxes[J].Organic Geochemistry,2007,38(8):1 251-1 255.
[57] Liu W, Yang H, Li L. Hydrogen isotopic compositions of n-alkanes from terrestrial plants correlate with their ecological life forms[J].Oecologia,2006,150:330-338.
[58] Northfelt D W, DeNiro M J, Epstein S. Hydrogen and carbon isotopic ratios of the cellulose nitrate and saponifiable lipid fractions prepared from annual growth rings of a California redwood[J].Geochimica et Cosmochimica Acta,1981,45(10):1 895-1 898.
[59] Sternberg L D S L. D/H ratios of environmental water recorded by D/H ratios of plant lipids[J].Nature,1988,333:59-61.
[60] Sauer P E, Eglinton T I, Hayes J M, et al. Compound-specific D/H ratios of lipid biomarkers from sediments as a proxy for environmental and climatic conditions[J].Geochimica et Cosmochimica Acta,2001,65(2):213222.[ZK)]
[61] Huang Y, Shuman B, Wang Y, et al. Hydrogen isotope ratios of individual lipids in lake sediments as novel tracers of climatic and environmental change: A surface sediment test[J].Journal of Paleolimnology,2004,31:363-375.
[62] Sachse D, Radke J, Gleixner G. Hydrogen isotope ratios of recent lacustrine sedimentary n-alkanes record modern climate variability[J].Geochimica et Cosmochimica Acta,2004,68(23):4 877-4 889.
[63] Jia G D, Wei K, Chen F J, et al. Soil n-alkane δD vs. altitude gradients along Mount Gongga, China[J].Geochimica et Cosmochimica Acta,2008,72(21):5 165-5 174.
[64] Hou J, D′Andrea W J, Huang Y. Can sedimentary leaf waxes record D/H ratios of continental precipitation? Field, model, and experimental assessments[J].Geochimica et Cosmochimica Acta,2008,72(14):3 503-3 517.
[65] Yang H, Huang Y. Preservation of lipid hydrogen isotope ratios in Miocene lacustrine sediments and plant fossils at Clarkia, Northern Ldaho, USA[J].Organic Geochemistry,2003,34(3):413-423.
[66] Zhang Yinghua, Wu Yanqing, Wen Xiaohu, et al. Application of environmental isotopes in water cycle[J].Advances in Water Science,2006,17(5):738-747.[张应华,仵彦卿,温小虎,等.环境同位素在水循环研究中的应用[J].水科学进展, 2006, 17(5): 738-747.][67] Xie S, Nott C J, Avsejs L A, et al. Palaeoclimate records in compound-specific δD values of a lipid biomarker in ombrotrophic peat[J].Organic Geochemistry,2000,31(10):1 053-1 057.
[68] Dawson D, Grice K, Wang S X, et al. Stable hydrogen isotopic composition of hydrocarbons in torbanites (Late Carboniferous to Late Permian) deposited under various climatic conditions[J].Organic Geochemistry,2004,35(2):189-197.
[69] Huang Y, Clemens S C, Liu W, et al. Large-scale hydrological change drove the late Miocene C4 plant expansion in the Himalayan foreland and Arabian Peninsula[J].Geology,2007,35:531-534.

[1] 田少华,肖国桥,杨欢. GDGTs在黄土古环境重建中的研究进展[J]. 地球科学进展, 2020, 35(5): 465-477.
[2] 武雪超, 郝青振, Marković Slobodan B, 付玉, 娜米尔, 宋扬, 郭正堂. 多瑙河黄土与古环境研究进展[J]. 地球科学进展, 2020, 35(4): 363-377.
[3] 王宇航, 朱园园, 黄建东, 宋虎跃, 杜勇, 李哲. 海相碳酸盐岩稀土元素在古环境研究中的应用[J]. 地球科学进展, 2018, 33(9): 922-932.
[4] 刘江艳, 张昌民, 尹太举, 朱锐, 侯国伟. 涌潮沉积研究现状及进展[J]. 地球科学进展, 2018, 33(1): 66-74.
[5] 王瑞, 余克服, 王英辉, 边立曾. 珊瑚礁的成岩作用[J]. 地球科学进展, 2017, 32(3): 221-233.
[6] 许子娟, 左昕昕, 范百龄, 丁新泉, 张晓东, 李子川, 闫翠香, 宋照亮. 植硅体圈闭碳地球化学研究进展[J]. 地球科学进展, 2017, 32(2): 151-159.
[7] 胡玉, 陈建徽, 王海鹏, 吕飞亚, 魏国英. 基于摇蚊的古环境和古气候国内外研究进展与展望[J]. 地球科学进展, 2016, 31(8): 870-884.
[8] 焦念志, 张传伦, 谢树成, 刘纪化, 张飞. 古今结合论碳汇、见微知著识海洋 *[J]. 地球科学进展, 2014, 29(11): 1294-1297.
[9] 李仁成, 樊俊, 高崇辉. 植硅体现代过程研究进展[J]. 地球科学进展, 2013, 28(12): 1287-1295.
[10] 袁子能,邢磊,张海龙,赵美训. 生物标志物稳定氢同位素研究进展及在海洋古环境重建中的应用[J]. 地球科学进展, 2012, 27(3): 276-283.
[11] 曾艳,陈敬安,朱正杰,李键. 湖泊沉积物Rb/Sr比值在古气候/古环境研究中的应用与展望[J]. 地球科学进展, 2011, 26(8): 805-810.
[12] 李建如. 有孔虫壳体的Mg/Ca比值在古环境研究中的应用[J]. 地球科学进展, 2005, 20(8): 815-822.
[13] 林田;郭志刚;杨作升. 类脂化合物单体碳稳定同位素在古气候环境研究中的意义[J]. 地球科学进展, 2005, 20(8): 910-915.
[14] 李玉梅. 最近2.5Ma黄土高原环境变化研究进展——来自洛川黄土地层的证据[J]. 地球科学进展, 2002, 17(1): 118-125.
[15] 吉利明;陈践发;郑建京;王杰. 华北燕山地区中新元古代沉积记录及其古气候、古环境特征[J]. 地球科学进展, 2001, 16(6): 777-784.
阅读次数
全文


摘要