[1] Eglinton G, Hamilton R G. Leaf epicuticular waxes[J].Science,1967,156:1 322-1 335. [2] Meinschein W, Barghoorn E S, Schopf J W. Biological remnants in a precambrian sediment[J].Science,1964,145:262-263. [3] Hayes J M, Freeman K H, Popp B N, et al. Compound-specific isotopic analyses: A novel tool for reconstruction of ancient biogeochemical processes[J].Organic Geochemistry,1990,16:1 115-1 128. [4] Ni Yu, Guo Yanjun. Progress in the study on genes encoding enzymes involved in biosynthesis of very long chain fatty acids and cuticular wax in plants[J].Hereditas,2008,30(5):561-567.[倪郁,郭彦军.植物超长链脂肪酸及角质层蜡质生物合成相关酶基因研究现状[J].遗传,2008,30(5):561-567.] [5] Shepherd T, Griffiths D W. The effects of stress on plant cuticular waxes[J].New Phytologist,2006, 171(3):469-499. [6] Millar A A, Clemens S, Zachgo S, et al. An arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme[J].The Plant Cell,1999, 11:825-838. [7] Sessions A L, Burgoyne T W, Schimmelmann A, et al. Fractionation of hydrogen isotopes in lipid biosynthesis[J].Organic Geochemistry,1999, 30(9):1 193-1 200. [8] Dodd R S, Afzal-Rafii Z A. Habitat-related adaptive properties of plant cuticular lipids[J].Evolution,2000, 54(4):1 438-1 444. [9] Dodd R S, Poveda M M. Environmental gradients and population divergence contribute to variation in cuticular wax composition in Juniperus communis[J].Biochemical Systematics and Ecology,2003, 31(11):1 257-1 270. [10] Hauke V, Scheriber L. Ontogenetic and seasonal development of wax composition and cuticular transpiration of ivy (Hedera helix L.) sun and shade leaves[J].Planta,1998, 207: 67-75. [11] Dodd R S, AfzalRafii Z, Power A B. Ecotypic adaptation in Austrocedrus chilensis in cuticular hydrocarbon composition[J]. The New Phytologist,1998, 138(4): 699-708. [12] Gagosian R B, Peltzer E T. The importance of atmospheric input of terrestrial organic material to deep sea sediments[J]. Organic Geochemistry,1986, 10(4/6):661-669. [13] Simoneit B R T, Sheng G Y, Fu J M, et al. Molecular marker of extractable organic matter in aerosols from urban areas of China[J].Atomosphere Environment, 1991, 25A:2 111-2 129. [14] Schefu E, Ratmeyer V, Stuut J B W, et al. Carbon isotope analyses of n-alkanes in dust from the lower atmosphere over the central eastern Atlantic[J].Geochimica et Cosmochimica Acta,2003, 67(10):1 757-1 767. [15] Sicre M A, Peltzer E T. Lipid geochemistry of remote aerosols from the southwestern Pacific Ocean sector[J].Atmospheric Environment,2004, 38(11):1 615-1 624. [16] Sachse D, Radke J, Gleixner G. δD values of individual n-alkanes from terrestrial plants along a climatic gradient—Implications for the sedimentary biomarker record[J].Organic Geochemistry,2006, 37(4):469-483. [17] Gelpi E, Schneider H, Mann J, et al. Hydrocarbons of geochemical significance in microscopic algae[J].Phytochemistry,1970, 9(3): 603-612. [18] Corrigan D, Kloos C, O′Connor C S, et al. Alkanes from four species of Sphagnum moss[J].Phytochemistry,1973, 12(1):213-214. [19] Ficken K J, Barber K E, Eglinton G. Lipid biomarker, δ3C and plant macrofossil stratigraphy of a Scottish montane peat bog over the last two millennia[J].Organic Geochemistry,1998, 28: 217-237. [20] Nott C J, Xie S C, Avsejs L A, et al. N-alkane distributions in ombrotrophic mires as indicators of vegetation change related to climatic variation[J].Organic Geochemistry,2000,31:231-235. [21] Cranwell P A. Chain-length distribution of n-alkanes from lake sediments in relation to postglacial environmental change[J]. Freshwater Biology,1973,3(3):259-265. [22] Schwark L, Zink K, Lechterbeck J. Reconstruction of postglacial to early Holocene vegetation history in terrestrial Central Europe via cuticular lipid biomarkers and pollen records from lake sediments[J].Geology,2002,30:463-466. [23] Sage R F. Evironmental and evolutionary preconditions for the origin and diversification of the C4 photosynthetic syndrome[J].Plant Biology,2001,3(3):202-213. [24] Boom A, Marchant R, Hooghiemstra H, et al. CO2-and temperature-controlled altitudinal shifts of C4- and C3-dominated grasslands allow reconstruction of palaeoatmospheric pCO2[J].Palaeogeography, Palaeoclimatology, Palaeoecology,2002, 177: 151-168. [25] Hughen K, Eglinton T I, Li X, et al. Abrupt tropical vegetation response to rapid climate changes[J].Science,2004,304:1 955-1 959. [26] Rommerskirchen F, Eglinton G, Dupont L, et al. A north to south transect of Holocene southeast Atlantic continental margin sediments: Relationship between aerosol transport and compoundspecific δ13C land plant biomarker and pollen records[J]. Geochemistry Geophysics Geosystems,2003, 4,doi:10.1029/2003GC000541. [27] Freeman K H, Colarusso L A. Molecular and isotopic records of C4 grassland expansion in the late Miocene[J].Geochimica et Cosmochimica Acta,2001, 65(9):1 439-1 454. [28] Ficken K J, Li B, Swain D L, et al. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes[J].Organic Geochemistry,2000,31:745-749. [29] Lerman A. Lakes: Chemistry, geology, physics[C]//Barnes M A, Barnes W C. Organic Compounds in Lake Sediments. Berlin: Springer-Verlag,1978:127-152. [30] Farrimond P, Flanagan L R. Lipid stratigraphy of a Flandrian peat bed (Northumberland, UK): Comparison with the pollen record[J].The Holocene,1996,6:69-74. [31] Xie S C, Nott C J, Avsejs L A, et al. Molecular and isotopic stratigraphy in an ombrotrophic mire for paleoclimate reconstruction[J].Geochimica et Cosmochimica Acta,2004,68(13):2 849-2 862. [32] Zheng Y H, Zhou W J, Meyers P A, et al. Lipid biomarkers in the Zoigê-Hongyuan peat deposit: Indicators of Holocene climate changes in West China[J].Organic Geochemistry,2007,38(11):1 927-1 940. [33] Xie Shucheng, Wang Zhiyuan, Wang Hongmei, et al. The occurrence of a grassy vegetation over the Chinese Loess plateau since the last inter-glacier: The molecular fossil record[J].Science in China(Series D),2002,32(1):28-35.[谢树成,王志远,王红梅,等.末次间冰期以来黄土高原的草原植被景观:来自分子化石的证据[J].中国科学:D辑,2002,32(1):28-35.] [34] Liang Bin, Xie Shucheng, Gu Yansheng, et al. Distribution of n-alkanes as indicative of paleovegetation change in Pleistocene red earth Xuancheng, Anhui[J].Earth Science—Journal of China University of Geosciences,2005,30(2):129-132.[梁斌,谢树成,顾延生,等.安徽宣城更新世红土正构烷烃分布特征及其古植被意义[J].地球科学——中国地质大学学报,2005,30(2):129-132.] [35] Xie Shucheng, Yi Yi, Liu Yuyan, et al. The Pleistocene vermicular red earth in North China signaling the global climate change: The molecular fossil recor[J].Science in China (Series D),2003, 33(5):411-417.[谢树成,易轶,刘育燕,等.中国南方更新世网纹红土对全球气候变化的响应:分子化石记录[J]. 中国科学:D辑,2003,33(5):411-417.] [36] Wu Weihua. Plant Physiology\[M\]. Beijing: Science Press,2003.[武维华. 植物生理学[M].北京:科学出版社,2003.] [37] Luo Y H, Steinberg L, Suda S, et al. Extremely low D/H ratios of photoproduced hydrogen by cyanobacteria[J].Plant & Cell Physiology,1991,32:897-900. [38] Yakir D. Variations in the natural abundance of oxygen-18 and deuterium in plant carbohydrates[J].Plant, Cell and Environment,1992,15(9):1 005-1 020. [39] Estep M F, Hoering T C. Biogeochemistry of the stable hydrogen isotopes[J].Geochimica et Cosmochimica Acta,1980,44(8):1 197-1 206. [40] Rundel P W, Ehleringer J R, Nagy K A. Stable isotopes in ecological research[C]//White J W C. Stable Hydrogen Isotope Ratios in Plants: A Review of Current Theory and Some Potential Applications. Berlin: Springer,1989:142-162. [41] Schmidt H L, Werner R A, Eisenreich W. Systematics of 2H patterns in natural compounds and its importance for the elucidation of biosynthetic pathways[J].Phytochemistry Reviews,2003,2:61-85. [42] Hayes J M. Fractionation of the isotopes of Carbon and Hydrogen in biosynthetic processes[C]//National Meeting of the Geological Society of America. Boston: Mineralogical Society of America,2001. [43] Schmidt H L, Werner R A, Eisenreich W. Systematics of 2H patterns in natural compounds and its importance for the elucidation of biosynthetic pathways[J].Phytochemistry Reviews,2003,2:61-85. [44] Sessions A L. Seasonal changes in D/H fractionation accompanying lipid biosynthesis in Spartina alterniflora[J].Geochimica et Cosmochimica Acta,2006,70(9):2 153-2 162. [45] Sachse D, Radke J, Gleixner G. Hydrogen isotope ratios of recent lacustrine sedimentary n-alkanes record modern climate variability[J].Geochimica et Cosmochimica Acta,2004,68(23):4 877-4 889. [46] Smith F A, Pedentchouk N, Freeman K H. Hydrogen Isotope Ratios of Lipid Biomarkers (n-alkanes) as Paleohydrologic Proxies: Aquatic vs. Terrestrial Archives[R]. France: EGS-AGU-EUG Joint Assembly, Abstracts from the meeting held in Nice,2003.[47] Graham D F, Lucas A C, Belinda B. Heavy water fractionation during transpiration[J].Plant Physiology,2007,143:11-18. [48] Roden J S, Ehleringer J R. Hydrogen and oxygen isotope ratios of tree-ring cellulose for riparian trees grown long-term under hydroponically controlled environments[J].Oecologia,1999,121:467-477. [49] Roden J S, Ehleringer J R. Hydrogen and oxygen isotope ratios of tree ring cellulose for field-grown riparian trees[J].Oecologia,2000, 123: 481-489. [50] Bi X, Sheng G, Liu X, et al. Molecular and carbon and hydrogen isotopic composition of n-alkanes in plant leaf waxes[J]. Organic Geochemistry,2005,36(10):1 405-1 417. [51] Smith F A, Freeman K H. Influence of physiology and climate on δD of leaf wax n-alkanes from C3 and C4 grasses[J]. Geochimica et Cosmochimica Acta,2006,70(5):1 172-1 187. [52] Chikaraishi Y, Naraoka H, Poulson S R. Hydrogen and carbon isotopic fractionations of lipid biosynthesis among terrestrial (C3, C4 and CAM) and aquatic plants[J].Phytochemistry,2004,65(10):1 369-1 381. [53] Liu W, Huang Y. Compound specific D/H ratios and molecular distributions of higher plant leaf waxes as novel paleoenvironmental indicators in the Chinese Loess Plateau[J].Organic Geochemistry,2005,36(6):851-860. [54] Hou J Z, D′Andrea W J, MacDonald D, et al. Hydrogen isotopic variability in leaf waxes among terrestrial and aquatic plants around Blood Pond, Massachusetts (USA)[J].Organic Geochemistry,2007,38(6):977-984. [55] Pedentchouk N, Sumner W, Tipple B, et al. δ13C and δD compositions of n-alkanes from modern angiosperms and conifers: an experimental set up in central Washington State, USA[J].Organic Geochemistry,2008,39(8):1 066-1 071. [56] Hou J, D′Andrea W J, MacDonald D, et al. Evidence for water use efficiency as an important factor in determining the δD values of tree leaf waxes[J].Organic Geochemistry,2007,38(8):1 251-1 255. [57] Liu W, Yang H, Li L. Hydrogen isotopic compositions of n-alkanes from terrestrial plants correlate with their ecological life forms[J].Oecologia,2006,150:330-338. [58] Northfelt D W, DeNiro M J, Epstein S. Hydrogen and carbon isotopic ratios of the cellulose nitrate and saponifiable lipid fractions prepared from annual growth rings of a California redwood[J].Geochimica et Cosmochimica Acta,1981,45(10):1 895-1 898. [59] Sternberg L D S L. D/H ratios of environmental water recorded by D/H ratios of plant lipids[J].Nature,1988,333:59-61. [60] Sauer P E, Eglinton T I, Hayes J M, et al. Compound-specific D/H ratios of lipid biomarkers from sediments as a proxy for environmental and climatic conditions[J].Geochimica et Cosmochimica Acta,2001,65(2):213222.[ZK)] [61] Huang Y, Shuman B, Wang Y, et al. Hydrogen isotope ratios of individual lipids in lake sediments as novel tracers of climatic and environmental change: A surface sediment test[J].Journal of Paleolimnology,2004,31:363-375. [62] Sachse D, Radke J, Gleixner G. Hydrogen isotope ratios of recent lacustrine sedimentary n-alkanes record modern climate variability[J].Geochimica et Cosmochimica Acta,2004,68(23):4 877-4 889. [63] Jia G D, Wei K, Chen F J, et al. Soil n-alkane δD vs. altitude gradients along Mount Gongga, China[J].Geochimica et Cosmochimica Acta,2008,72(21):5 165-5 174. [64] Hou J, D′Andrea W J, Huang Y. Can sedimentary leaf waxes record D/H ratios of continental precipitation? Field, model, and experimental assessments[J].Geochimica et Cosmochimica Acta,2008,72(14):3 503-3 517. [65] Yang H, Huang Y. Preservation of lipid hydrogen isotope ratios in Miocene lacustrine sediments and plant fossils at Clarkia, Northern Ldaho, USA[J].Organic Geochemistry,2003,34(3):413-423. [66] Zhang Yinghua, Wu Yanqing, Wen Xiaohu, et al. Application of environmental isotopes in water cycle[J].Advances in Water Science,2006,17(5):738-747.[张应华,仵彦卿,温小虎,等.环境同位素在水循环研究中的应用[J].水科学进展, 2006, 17(5): 738-747.][67] Xie S, Nott C J, Avsejs L A, et al. Palaeoclimate records in compound-specific δD values of a lipid biomarker in ombrotrophic peat[J].Organic Geochemistry,2000,31(10):1 053-1 057. [68] Dawson D, Grice K, Wang S X, et al. Stable hydrogen isotopic composition of hydrocarbons in torbanites (Late Carboniferous to Late Permian) deposited under various climatic conditions[J].Organic Geochemistry,2004,35(2):189-197. [69] Huang Y, Clemens S C, Liu W, et al. Large-scale hydrological change drove the late Miocene C4 plant expansion in the Himalayan foreland and Arabian Peninsula[J].Geology,2007,35:531-534. |