[1] Suttle C A. Viruses in the sea[J]. Nature, 2005, 437: 356-361. [2] Suttle C A. Marine viruses-major players in the global ecosystem[J]. Nature Reviews Microbiology, 2007, 5: 801-812. [3] Fuhrman J A, Noble R T. Viruses and protists cause similar bacterial mortality in coastal seawater[J].Limnology and Oceanography,1995, 40: 1 236-1 242. [4] Hennes K P, Simon M. Significance of bacteriophages for controlling bacterioplankton growth in a mesotrophic lake[J]. Applied and Environmental Microbiology, 1995, 61: 333-340. [5] Weinbauer M G, Peduzzi P. Effect of virus-rich high molecular weight concentrates of seawater on the dynamics of dissolved amino acids and carbohydrates[J].Marine Ecology Progress Series,1995, 127: 245-253. [6] Steward G F, Smith D C, Azam F. Abundance and production of bacteria and viruses in the Bering and Chukchi seas[J]. Marine Ecology Progress Series, 1996, 131: 287-300. [7] Fuhrman J A. Marine viruses and their biogeochemical and ecological effects[J].Nature,1999, 399: 541-547. [8] Wommack K E, Colwell R R. Virioplankton: Viruses in aquatic ecosystems[J].Microbiology and Molecular Biology Reviews, 2000, 64: 69-114. [9] Wilhelm S W, Suttle C A. Viruses and nutrient cycles in the sea: Viruses play critical roles in the structure and function of aquatic food webs[J]. Bioscience, 1999, 49: 781-788. [10] Hedges J I. Why dissolved organics matter?[C]//Hansell D A, Carlson C A, eds. Biogeochemistry of Marine Dissolved Organic Matter.New York: Academic Press,2002:1-33. [11] Evans C, Susanne V K, Louise J D, et al. The relative significance of viral lysis and microzooplankton grazing as pathways of dimethylsulfoniopropionate (DMSP) cleavage: An Emiliania huxleyi culture study [J].Limnology and Oceanography, 2007, 52: 1 036-1 045. [12] Poorvin L, Rinta-Kanto J M, Hutchins D A,et al.Viral release of iron and its bioavailability to marine plankton[J].Limnology and Oceanography,2004, 49:1 734-1 741. [13] Waterbury J B, Watson S W, Valois F W, et al. Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus[C]//Platt T, Li W K W, eds. Photosynthetic Picoplankton. Canadian Bulletin of Fisheries and Aquatic Sciences, Toronto,1986. [14] Li W K W. Primary production of prochlorophytes, cyanobacteria, and eukaryotic ultraphytoplankton: Measurements from flow cytometric sorting[J].Limnology and Oceanography,1994, 39: 169-175. [15] Suttle C A, Chan A M. Marine cyanophages infecting oceanic and coastal strains of Synechococcus: Abundance, morphology, cross-reactivity and growth characteristics[J]. Marine Ecology Progress Series,1993, 92: 99-109. [16] Waterbury J B, Valois F W. Resistance to co-occurring phages enables marine Synechococcus communities to coexist with cyanophages abundant in seawater[J].Applied and Environmental Microbiology, 1993, 59: 3 393-3 399. [17] Wilson W H, Joint I R, Carr N G, et al. Isolation and molecular characterization of five marine cyanophages propagated on Synechococcus sp. strain WH7803[J].Applied and Environmental Microbiology,1993, 59: 3 736-3 742. [18] Lu J, Chen F, Hodson R E. Distribution, isolation, host specificity, and diversity of cyanophages infecting marine Synechococcus sp. in the Georgia river estuaries[J].Applied and Environmental Microbiology,2001, 67: 3 285-3 290. [19] Herdman M, Castenholz R E, Iteman I, et al. 2001 Subsection I (Formerly Chroococcales wettstein 1924, emend. Rippka, deruelles, waterbury, Herdman and Stanier 1979)[C]//Boone D R, Castenholz R W, Garrity G M, eds. Bergey′s Manual of Systematic Bacteriology (2nd). New Yerk: Springer Publishers,1979:493-514. [20] Crosbie N D, Pckl M, Weisse T. Dispersal and phylogenetic diversity of nonmarine picocyanobacteria, inferred from 16S rRNA gene and cpcBA intergenic spacer sequence analyses[J].Applied and Environmental Microbiology,2003, 69: 5 716-5 721. [21] Ernst A, Becker S, Wollenzien U I, et al. Ecosystem-dependent adaptive radiations of picocyanobacteria inferred from 16S rRNA and ITS-1 sequence analysis[J].Microbiology,2003, 149: 217-228. [22] Everroad R C, Wood A M. Comparative molecular evolution of newly discovered picocyanobacterial strains reveals a phylogeneticaly informative variable region of β-Phycoerythrin[J].Journal of Phycology,2006, 42:1 300-1 311. [23] Urbach E, Scanlan D J, Distel D L, et al. Rapid diversification of marine picophytoplankton with dissimilar light harvesting structures inferred from sequences of Prochlorococcus and Synechococcus (cyanobacteria) [J].Journal of Molecular Evolution, 1998, 46:188-201. [24] Ferris M J, Palenik B. Niche adaptation in ocean cyanobacteria[J].Nature,1998, 396: 226-228. [25] Palenik B. Chromatic adaptation in marine Synechococcus strains[J].Applied and Environmental Microbiology,2001, 65: 5 247-5 251. [26] Rocap G, Distel D L, Waterbury J B, et al. Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S-23S ribosomal DNA internal transcribed spacer sequences[J].Applied and Environmental Microbiology,2002, 68: 1 180-1 191. [27] Cai H Y, Wang K, Huang S J, et al. Distinct patterns of picocyanobacterial communities in winter and summer in the Chesapeake bay[J].Applied and Environmental Microbiology,2010, 76:2 955-2 960. [28] Sullivan M B, Waterbury J B, Chisholm S W. Cyanophages infecting the oceanic cyanobacterium Prochlorococcus[J]. Nature, 2003, 424: 1 047-1 051. [29] Chen F, Lu J R. Genomic sequence and evolution of marine cyanophage P60: A new insight on lytic and lysogenic phages [J]. Applied and Environmental Microbiology,2002, 68: 2 589-2 594. [30] Stewart F M, Levin B R. The population biology of bacterial viruses: Why be temperate[J].Theoretical Population Biology, 1984,26:93-117. [31] McDaniel L, Houchin L A, Williamson S J,et al. Lysogeny in marine Synechococcus[J]. Nature,2002, 415: 496. [32] Wilson W H, Carr N G, Mann N H. The effect of phosphate status on the kinetics of cyanophage infection in the oceanic cyanobacterium Synechococcus sp. WH 7803[J].Journal of Phycology,1996, 32: 506-516. [33] Wilson W H, Turner S, Mann N H. Population dynamics of phytoplankton and viruses in phosphatelimited mesocosm and their effect on DMSP and DMS production[J].Estuarine, Coastal and Shelf Science,1998, 46: 49-59. [34] Jiang S, Fu W, Fuhrman J A.The vertical distribution and diversity of marine bacteriophages at a station off southern California[J].Microbial Ecology,2003, 45:399-410. [35] Larsen A, Fonnes G A, Sandaa R A, et al. Spring phytoplankton bloom in Norwegian coastal waters: Microbial community dynamics, succession and diversity[J]. Limnology and Oceanography,2004, 49:180-190. [36] Vreäs L, Bourne D, Sandaa R A, et al. Response of bacterial and viral communities to nutrient manipulations in seawater mesocosms[J].Aquatic Microbial Ecology, 2003, 31:109-121. [37] Paul J H, Sullivan M B, Segall A M,et al. Marine phage genomics[J].Biochemistry Molecular Biology,2002, 133: 463-476. [38] Rohwer F, Edwards R. The phage proteomic tree: A genome-based taxonomy for phage[J].Journal of Bacteriology,2002, 184: 4 529-4 535. [39] Hsiao C L, Black L W. Head morphogenesis of bacteriophage T4. III. The role of g20 in DNA packaging [J]. Virology,1978, 91: 26-38. [40] Coombs D, Eiserling F A. Studies on the structure protein composition and assembly of the neck of bacteriophage T4[J]. Journal of Molecular Biology,1977, 116: 375-407. [41] Breitbart M, Salamon P, Andresen B, et al. Genomic analysis of uncultured marine viral communities[J].Proceedings of the National Academy of Sciences USA,2002,99: 14 250-14 255. [42] Breitbart M, Felts B, Kelley S, et al. Diversity and population structure of a near-shore marine-sediment viral community[J]. Proceedings of the Royal Society B: Biological Sciences,2004,271: 565-574. [43] DeLong E F, Preston C M, Mincer T, et al. Community genomics among stratified microbial assemblages in the ocean's interior [J].Science,2006, 311: 496-503. [44] Frias-Lopez J, Shi Y M, Tyson G W, et al. Microbial community gene expression in ocean surface waters[J].Proceedings of the National Academy of Sciences,2008, 105:3 805-3 810. [45] Dorigo U, Jacquet S, Humbert J F. Cyanophage diversity, inferred from g20 gene analyses, in the largest natural lake in France, lake Bourget[J].Applied and Environmental Microbiology, 2004, 70: 1 017-1 022. [46] Wilhelm S W, Carberry M J, Eldridge M L, et al. Marine and freshwater cyanophages in a Laurentian great lake: Evidence from infectivity assays and molecular analyses of g20 genes[J].Applied and Environmental Microbiology, 2006, 72: 4 957-4 963. [47] Marston M F, Sallee J L. Genetic diversity and temporal variation in the cyanophage community infecting marine Synechococcus species in Rhode island′s coastal waters[J].Applied and Environmental Microbiology,2003, 69: 4 639-4 647. [48] Sandaa R A, Larsen A. Seasonal variations in virus-host populations in Norwegian coastal waters: Focusing on the cyanophage community infecting marine Synechococcus spp[J].Applied and Environmental Microbiology,2006, 72: 4 610-4 618. [49] Suttle C A, Chan A M. Dynamics and distribution of cyanophages and their effect on marine Synechococcus spp[J].Applied and Environmental Microbiology,1994,60: 3 167-3 174. [50] Suttle C A. Cyanophages and their role in the ecology of cyanobacteria[C]//Whitton B A, Potts M, eds. The Ecology of Cyanobacteria: Their Diversity in Time and Space.The Netherlands, Dordrecht: Kluwer Academic Publishers, 2000:563-589. [51] Frederickson C M, Short S M, Suttle C A. The physical environment affects cyanophage communities in British Columbia inlets [J].Microbial Ecology,2003, 46: 348-357. [52] Proctor L M, Fuhrman J A. Viral mortality of marine bacteria and cyanobacteria[J].Nature, 1990, 343: 60-62. [53] Garza D R, Suttle C A. The effect of cyanophages on the mortality of Synechococcus spp. and selection for UV resistant viral communities[J].Microbial Ecology, 1998, 36: 281. [54] Wilson W H, Fuller N J, Joint I R,et al. Analysis of cyanophage diversity and population structure in a southnorth transect of the Atlantic ocean[J].Bulletin De L′institut Oceanographique (Monaco),1999,19: 209-216. [55] Zhong Y, Chen F, Wilhelm S W,et al. Phylogenetic diversity of marine cyanophages isolates and natural virus communities as revealed by sequences of viral capsid assembly protein gene g20[J].Applied and Environmental Microbiology, 2002, 68:1576-1584.[56] Wilson W H, Nicholas J F, Joint I R, et al. Analysis of cyanophage diversity in the marine environment using denaturing gradient gel electrophoresis[C]//Bell C R, Brylinsky M, Johnson-Green P, eds. Microbial Biosystems: New Frontier. Proceedings of the 8th International Symposium on Microbial Ecology Halifax. Canada,2000:565-510. [57] Wang K, Chen F. Genetic diversity and population dynamics of cyanophage communities in the Chesapeake bay[J].Aquatic Microbial Ecology,2004, 34: 105-116. [58] Mühling M, Fuller N J, Millard A, et al. Genetic diversity of marine Synechococcus and co-occurring cyanophage communities: Evidence for viral control of phytoplankton[J].Environmental Microbiology,2005, 7: 499-508. [59] Fuller N J, Wilson W H, Joint I R, et al. Occurrence of a sequence in marine cyanophages similar to that of T4 g20 and its application to PCR based detection and quantification techniques[J].Applied and Environmental Microbiology,1998,64:2 051-2060. [60] Short C M, Suttle C A. Nearly identical bacteriophage structural gene sequences are widely distributed in both marine and freshwater environments[J].Applied and Environmental Microbiology,2005, 71: 480-486. [61] Wilhelm S W, Carberry M J, Eldridge M L, et al. Marine and freshwater cyanophages in a Laurentian great lake: Evidence from infectivity assays and molecular analyses of g20 genes[J].Applied and Environmental Microbiology,2006, 72: 4 957-4 963. [62] Wang K, Chen F. Prevalence of highly host-specific cyanophages in the estuarine environment[J].Environmental Microbiology, 2008, 10(2): 300-312. [63] Sullivan M B, Coleman M L, Quinlivan M, et al. Portal protein diversity and phage ecology[J].Environmental Microbiology, 2008, 10(10):2 810-2 823. [64] Stoddard L I, Martiny J B, Marston M F. Selection and characterization of cyanophage resistance in marine Synechococcus strains[J].Applied and Environmental Microbiology,2007, 73: 5 516-5 522. [65] Marusich E I, Mesyanzhinov V V. Nucleotide and deduced amino acid sequence of bacteriophage T4 gene 20 [J]. Nucleic Acids Research, 1989, 17: 7 514. [66] Bench S R, Hanson T E, Williamson K E, et al. Metagenomic characterization of Chesapeake bay virioplankton[J].Applied and Environmental Microbiology, 2007, 73:7 629-7 641. [67] Sullivan M B, Coleman M L, Weigele P, et al. Three Prochlorococcus cyanophage genomes: Signature features and ecological interpretations[J].PLoS Biology, 2005, 3:790-806. [68] Pope W H, Weigele P R, Chang J, et al. Genome sequence, structural proteins, and capsid organization of the cyanophage Syn5: A “horned” bacteriophage of marine Synechococcus[J].Journal of Molecular Biology, 2007, 368: 966-981. [69] Scholl D, Merril C. The genome of bacteriophage K1F, a T7-like phage that has acquired the ability to replicate on K1 strains of Escherichia coli[J].Journal of Bacteriology,2005, 187: 8 499-8 503. [70] Molineux I J. The T7 group[C]//The Bacteriophages. Calendar R, ed.Oxford: Oxford University Press UK,2006:277-301. [71] Scholl D, Kieleczawa J, Kemp P, et al. Genomic analysis of bacteriophages SP6 and K1-5, an estranged subgroup of the T7 supergroup[J].Journal of Molecular Biology, 2004, 335: 1 151-1 171. [72] Ceyssens P J, Lavigne R, Mattheus W, et al. Genomic analysis of Pseudomonas aeruginosa phages LKD16 and LKA1: Establishment of the {phi}KMV subgroup within the T7 Supergroup[J].Journal of Bacteriology,2006, 188: 6 924-6 931. [73] Chen F, Wang K, Bachoon D S, et al. Phylogenetic diversity of Synechococcus in the Chesapeake bay revealed by ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO) large subunit gene (rbcL) sequences[J].Aquatic Microbial Ecology, 2004, 36: 153-164. |