地球科学进展 ›› 2018, Vol. 33 ›› Issue (1): 66 -74. doi: 10.11867/j.issn.1001-8166.2018.01.0066

综述与评述 上一篇    下一篇

涌潮沉积研究现状及进展
刘江艳 1( ), 张昌民 1, 尹太举 1, 朱锐 1, 侯国伟 2   
  1. 1.长江大学地球科学学院,湖北 武汉 430100
    2.中国海洋石油有限公司上海分公司,上海 200050
  • 收稿日期:2017-09-18 修回日期:2017-11-07 出版日期:2018-01-10
  • 基金资助:
    国家重大科技专项项目“深层优势储层沉积成因机制及地质预测技术”(编号:2016ZX05027-002-007);国家自然科学基金项目“珠江口盆地渐新世—中新世潮汐沉积与潮汐周期研究”(编号:41302096)资助

Current Status and Advance of Tidal-Bore Deposit Study

Jiangyan Liu 1( ), Changmin Zhang 1, Taiju Yin 1, Rui Zhu 1, Guowei Hou 2   

  1. 1. College of Geosciences, Yangtze University, Wuhan 430100,China
    2. Research Institute of Shanghai Branch, China National Offshore Oil Corp, Shanghai 200050,China
  • Received:2017-09-18 Revised:2017-11-07 Online:2018-01-10 Published:2018-03-06
  • About author:

    First author:Liu Jiangyan(1988-),female,Lingbao City, He’nan Province,Ph.D student. Research areas include reservoir sedimentology.E-mail:jiangyan19880312@163.com

  • Supported by:
    Project supported by the National Major Science and Technology Project “Sedimentation mechanism and geology prediction technique of advantage reservior in deep zone” (No.2016ZX05027-002-007);The National Natural Science Foundation of China“Tidal dseposits and tidal vyclicities in oligocene & miocene River Mouth Basin”(No.41302096)

涌潮是在涨潮过程中潮波向上游方向行进的水跃现象,广泛存在于潮差大、平面上呈喇叭状的河口地区。研究涌潮沉积对了解河口湾区域的古气候、古环境、古地貌具有重要意义,且现代沉积研究表明涌潮沉积形成的砂体具备形成优良油气储层的潜力。然而一直以来关于涌潮的研究主要集中在其水力学特征以及对河口生态、工程造成的影响等方面,对涌潮沉积却涉及甚少。在对近年来国内外关于涌潮沉积研究的有代表性的论著综合分析基础上,从涌潮沉积构造、粒度分布、沉积模式等方面论述了涌潮沉积的鉴别标志,探讨目前研究中存在的主要问题,认为后期研究应综合多种研究手段对涌潮沉积模式进行完善,加强涌潮沉积砂体成岩作用及储层特征研究。旨在引起人们对涌潮沉积研究的重视,为涌潮沉积未来的研究提供方向。

Tidal bore is hydraulic jump during the process of tide flooding with the tide wave moving upstream. They are widely distributed in the estuary zone with high tidal range and funnel-shaped planeform. Tidal bore deposit study is important for further understanding about paleogeomorphology, paleoenvironment, paleoclimate of areas near the estuaries, and sandbody formed by tidal bore deposit could be potential oil and gas reservoir. Researches about tidal bore have been always concentrated on hydraulic characteristics of tidal bore and its influences on estuary environment and engineering, while the study on tidal bore deposit is rarely reported. One of the most important causes is the complex hydrodynamic conditions in the estuary zone. Deposits characteristics is complicated in this zone due to comprehensive effects of river flow, waves and tides. It is hard to affirm the preservation probability of tidal bore deposits, especially in the ancient rock record. In view of this, current status and forecast about tidal-bore deposit study were expounded in this study based on comprehensive summary and discussion about typical tidal bore deposit data and reports. Criteria for recognition of tidal-bore deposits were described in detail on the aspects of sedimentary structures, grain size distribution, and facies model. One of the most critical diagnostic marks of tidal bore was a special undulating erosion surface with a series of irregular and stepped excavations on it. This surface was formed by cyclic pressure loading induced by the passage of a tidal bore. In addition, the cross-bedding inclined upstream, soft sediment deformation structures and massive sandstone on the erosion surface were also important marks of a tidal bore deposit. Problems existing in current research were discussed and some suggestions were proposed. Various methods and technology should be used to perfect tidal bore facies model, and research on diagenesis and reservoir features of sandbody formed by tidal bore should be strengthened in the future. Sandbody formed by tidal bore of different types (breaking tidal bore and undular tidal bore) should be distinguished to deepen the understanding of their various hydrodynamic conditions and reservoir scale. Tidal bore is significant geological process in estuary zone, and deposits formed by it makes great influence on the geomorphology of this area, which should be paid more attention.

中图分类号: 

表1 现代沉积及古代岩石记录中已识别的涌潮沉积构造
Table 1 Depositional structures induced by tidal-bore that has been recognized in modern and ancient strata
图1 葡萄牙西部卢西坦盆地晚侏罗世Lourinha组Praia de Areia Branca剖面中涌潮成因的波状冲刷构造(据参考文献[9]修改)
可看到冲刷面上覆砂岩中指示倾向上游的交错层理以及下伏地层中发育的Taenidium(螺旋迹)生物遗迹,有些生物遗迹被冲刷面切割
Fig.1 Example of an undulating erosion surface at Praia de Areia Branca of Late Jurassic Lourinha Formation in Lusitanian Basin, Western Portugal (modified after reference [9])
The reversed flow directions above the erosion surface and the Taenidium barreti burrows, some burrows were truncated by the erosion surface
图2 爱沙尼亚西北部寒武系不同露头Tiskre组涌潮成因的泄水构造(据参考文献[44]修改)
(a)Muraste露头小型泄水通道组成的泄水网络,白色箭头指示单个的泄水通道,黄色箭头指示自生碎屑角砾岩;(b)Ninamaa露头块状的厚层粉砂岩,白色箭头指示发生液化变形的沉积物,图中的比例尺高为1 m;(c)Muraste露头的均质粉砂岩,左边的黄色箭头指示保存下来的潮汐纹层,右边的白色箭头指示泄水构造,均质砂岩的原始层理已经被泄水构造完全破坏
Fig.2 Dewatering structures triggered by tidal bore within the Tiskre Formation of different outcrops(modified after reference [44])
(a)Muraste outcrop section, small water-escape channels network (white arrows point to individual small channels), and autoclastic breccia (yellow arrow). (b)Ninamaa outcrop section, massive thick-bedded siltstone unit, liquefied sediment is indicated with white arrows, the stick on the picture is 1 m. (c)Homogeneous siltstone unit of Muraste outcrop, sediment on the left side of the photo retains tidal lamination (yellow arrow) while right side is largely homogenized and no original lamination is preserved
图3 中国钱塘江河口湾WSG剖面低—中潮滩涌潮及与其伴生的沉积岩芯特征(据参考文献[42]修改)
SD为砂质岩脉;LFS为负载—火焰状构造.ISP为侵入的砂质团块.PS为碟状构造.CB为包卷层理
Fig.3 Core photos of WSG section show typical sedimentary structures produced by tidal bores and associated processes at the lower-middle tidal flats(modified after reference[42])
SD:Sand Dikes. LFS: Load-Flame Structures. ISP: Invasive Sand Patches. PS: Pipe-like Structures. CB: Convolute Bedding
图4 中国钱塘江北部边滩涌潮与常规潮汐沉积粒度参数散点图(据参考文献[10]修改)
(a)尖山断面粒度参数平均粒径与分选系数散点图; (b)大缺口断面粒度参数平均粒径、分选系数在尖山断面解析图上投点;TBD代表涌潮沉积; TSD代表潮成砂质沉积; TMD代表潮成泥质沉积. SD, MD分别代表砂、泥质沉积
Fig.4 The grain size parameter plot distinguishing between tidal and tidal-bore deposit in northern flat of Qiantang River in China based on mean and sorting values of the samples (modified after reference [10])
(a)Jianshan-section. (b)Daquekou-section. TBD:Tidal Bore Deposits. TSD:Tidal Sandy Deposits.TMD:Tidal Muddy Deposits. SD:Sandy Deposits. MD:Muddy Deposits
图5 涌潮沉积相模式图(据参考文献[12]修改)
Fig.5 Facies model of tidal-bore deposit(modified after reference [12])
图6 美国堪萨斯州东北部晚宾夕法尼亚世Echo Cliff露头中的涌潮沉积特征(据参考文献[12]修改)
(a)泥质砂岩透镜体东北缘近照特征,可见底部和顶部冲刷面的圆齿状特征;(b)涌潮沉积的块状泥质砂岩局部特征,可见顶底冲刷面在潮波的不断改造下已成为对称或不对称的波痕(黑色箭头),白色箭头指示的是保留下来的局部下伏地层;照片中的粉色比例尺卡片高0.3 m,黑白色比例尺长0.15 m;(c)透镜状的泥质砂岩(短箭头指示透镜体边缘,长箭头指示透镜体的长轴)切割之前沉积的植物碎屑富集的块状砂岩
Fig.6 Tidal-bore deposit of Upper Pennsylvanian Echo Cliff outcrop of northeastern Kansas, USA(modified after reference [12])
(a)Close-up view of the northeastern of the muddy sandstone lens and the scalloped nature of basal and top surfaces.(b)Close-up of the bore deposit, showing structureless, muddy sandstone bounded by surfaces that have been reworked into symmetrical and asymmetrical ripples (black arrows). Note the partial preservation of a lower bed in the right side of the view (white arrow). The pink clipboard is 0.3 m high, the scale bar is 0.15 m long.(c)A lens-shaped body of structureless, muddy sandstone (short arrows indicate margins, long arrow indicates axis) cutting through previously deposited plant-debris-rich, structureless sandstone
[1] Qian Ning, Xie Hanxiang, Zhou Zhide,et al.The fluvial process of the big sand bar inside the Chien Tang Chiang Esturay[J].Journal of Geography,1964,30(2):124-141.
[钱宁,谢汉祥,周志德,等.钱塘江河口沙坎的近代过程[J].地理学报,1964,30(2):124-141.]
[2] Lynch D K.Tidal bores[J]. Scientific American,1982,247(4):146-156.
[3] Bartsch-Winkler Susan, Lynch D K.Catalog of Worldwide Tidal Bore Occurences and Characteristics[R]. Denver, CO:U.S. Geological Survey Circular, 1988: 1-17.
[4] Lin Bingyao.Formation of tidal bore in shallow-water flow[J]. Advances in Hydrodynamics, 1988,3(4):63-69.
[林炳尧. 浅水流中涌潮的形成[J].水动力学研究与进展,1988,3(4):63-69.]
[5] Lin Bingyao, Huang Shichang, Mao Xianzhong.Analyses of undular hydraulic jump and undular bore[J]. Journal of Hydrodynamics, 1998,13(1):106-115.
[林炳尧,黄世昌,毛献忠. 波状水跃和波状涌潮的分析[J].水动力学研究与进展,1998,13(1):106-115.]
URL    
[6] Lin Bingyao, Zhou Chaosheng, Huang Shichang.Research about tidal bore[J]. Chinese Journal of Nature,1998,20(1):28-33.
[林炳尧,周潮生,黄世昌. 关于涌潮的研究[J].自然杂志,1998, 20(1):28-33.]
[7] Lin Bingyao, Huang Shichang, Mao Xianzhong.Deformation process of tidal waves in Qiantang Estuary[J].Journal of Hydrodynamics(Series A), 2002, 17(6): 665-675.
[林炳尧, 黄世昌, 毛献忠.钱塘江河口潮波变化过程[J].水动力学研究与进展:A辑,2002,17(6): 665-675.]
doi: 10.3969/j.issn.1000-4874.2002.06.003     URL    
[8] Chen Shenliang, Chen Jiyu, Gu Guochuan.The tidal bore on the North Branch of Changjiang Estuary and its effects on the estuary[J]. Journal of East China Normal University(Natural Science), 2003,(2):74-80.
[陈沈良,陈吉余,谷国传.长江口北支的涌潮及其对河口的影响[J].华东师范大学学报:自然科学版, 2003,(2):74-80.]
doi: 10.3969/j.issn.1000-5641.2003.02.014    
[9] Martinius A W, Gowland S.Tide-influenced fluvial bedforms and tidal bore deposits (Late Jurassic Lourinhã Formation, Lusitanian Basin, Western Portugal)[J]. Sedimentology, 2011,58(1): 285-324.
doi: 10.1111/j.1365-3091.2010.01185.x     URL    
[10] Fan Daidu, Cai Guofu, Shang Shuai, et al.Characteristics of tidal bore deposit in Northern Qiantang Estuary[J]. Chinese Science Bulletin, 2012,57(13):1 157-1 167.
[范代读,蔡国富,尚帅,等. 钱塘江河口北边滩涌潮沉积作用与特征[J].科学通报,2012, 57(13):1 157-1 167.]
[11] Khezri N, Chanson H.Sediment inception under breaking tidal bores[J]. Mechanics Research Communications, 2012,41:49-53. DOI:10.1016/j.mechrescom.2012.02.010.
doi: 10.1016/j.mechrescom.2012.02.010     URL    
[12] Fielding C R,Joeckel R M.Recognition of tidal-bore in the rock record: Towards a facies model[J]. Journal of Sedimentary Research, 2015,85(2):118-123.
doi: 10.2110/jsr.2015.14     URL    
[13] Li Congxian, Fan Daidu.Development of the Holocene Changjiang Delta and its influence on adjacent coastal sedimentary systems[J]. Journal of Palaeogeography, 2009,11(1):115-122.
[李从先,范代读. 全新世长江三角洲的发育及其对相邻海岸沉积体系的影响[J].古地理学报,2009,11(1):115-122.]
[14] Zhao Xuehua.1D Numerical modeling of tidal bore in the Qiantang River[J]. Journal of Hydraulic Engineering, 1985,1: 50-54.
[赵雪华. 钱塘江涌潮的一维数学模型[J].水利学报,1985,1: 50-54.DOI:10.13243/j.cnki.slxb.1985.01.006.]
[15] Du Yong.On generation of bores in sloping and narrowing estuaries of arbitrary shape[J]. Journal of Ocean University of Qingdao, 1989,19(3):28-33.
[杜勇. 河口变形效应与涌潮的形成[J].青岛海洋大学学报,1989,19(3):28-33.]
[16] Zhang Shengkai,Lei Jintao,Li Fei.Advances in global ocean tide models[J].Advances in Earth Science,2015,30(5):579-588.
[张胜凯,雷锦韬,李斐.全球海潮模型研究进展[J].地球科学进展,2015,30(5):579-588.]
doi: 10.11867/j.issn.1001-8166.2015.05.0579    
[17] Tan Weiyan, Hu Siyi.2D numerical modelling of bores in the Qiantang Estuary[J]. Advances in Water Science, 1995,6(2):83-93.
[谭维炎,胡四一. 钱塘江口涌潮的二维数值模拟[J].水科学进展,1995,6(2):83-93.]
[18] Su Mingde, Xu Xin, Zhu Jinlin.The application of numerical simulation in analysis of Qiantangjiang River: Result and discussion[J]. Acta Mechanica Sinica, 1999, 31(6):700-716.
[苏铭德,徐昕,朱锦林.数值模拟在钱塘江涌潮分析中的应用——计算结果和分析[J].力学学报,1999, 31(6):700-716.]
[19] Li Shaowu, Lu Lifeng, Shi Zhong.A quasi-3D numerical model for estuarine tidal bore[J]. Journal of Hydrodynamics (Series A), 2004, 19(4):407-415.
[李绍武,卢丽锋,时钟.河口准三维涌潮数学模型研究[J].水动力学研究与进展:A辑, 2004, 19(4):407-415.]
[20] Mu Jinbin, Zhang Xiaofeng, Xie Zuotao.Effects of roughness on tidal bore[J]. Engineering Journal of Wuhan University, 2005,38(1):83-87.
[穆锦斌,张小峰,谢作涛.摩阻对涌潮的影响[J].武汉大学学报:工学版, 2005, 38(1):83-87.]
[21] Madsen P A, Simonsen H J, Pan Cunhong.Numerical simulation of tidal bores and hydraulic jumps[J]. Coastal Engineering, 2005, 52(5):409-433.
doi: 10.1016/j.coastaleng.2004.12.007     URL    
[22] Wolanski E, Williams D, Hanert E.The sediment trapping efficiency of the macro-tidal Daly Estuary, tropical Australia[J]. Estuarine, Coastal and Shelf Science, 2006,69(1/2):291-298.
doi: 10.1016/j.ecss.2006.04.023     URL    
[23] Pan Cunhong, Lin Bingyao, Mao Xianzhong.2D numerical simulation of tidal bore in Qiantang River[J]. The Ocean Engineering, 2007,25(1):50-56.
[潘存鸿,林炳尧,毛献忠.钱塘江涌潮二维数值模拟[J].海洋工程, 2007, 25(1):50-56.]
[24] Pan Cunhong, Lu Haiyan,Zeng Jian.Characteristic and numerical simulation of tidal bore in Qiantang River[J]. Hydro-Science and Engineering, 2008,(2): 1-9.
[潘存鸿,鲁海燕,曾剑.钱塘江涌潮特性及其数值模拟[J].水利水运工程学报,2008,(2):1-9.DOI:10.16198/j.cnki.1009-640x.2008.02.001.]
doi: 10.3969/j.issn.1009-640X.2008.02.001     URL    
[25] Lubin P, Glockner S, Chanson H.Numerical simulation of a weak breaking tidal bore[J]. Mechanics Research Communications, 2010,37(1):119-121.
doi: 10.1016/j.mechrescom.2009.09.008     URL    
[26] Xie Dongfeng, Pan Cunhong, Lu Bo, et al.A study on the hydrodynamic characteristics of the Qiantang tidal bore based on field data[J]. Chinese Journal of Hydrodynamics, 2012, 27(5):501-508.
[谢东风,潘存鸿,陆波,等.基于实测资料的钱塘江涌潮水动力学特性研究[J].水动力学研究与进展, 2012,27(5):501-508.]
doi: 10.3969/j.issn1000-4874.2012.05.002     URL    
[27] Yeh H H, Mok K M.On turbulence in bores[J]. Physics of Fluids, 1990,2(5): 821-828.
doi: 10.1063/1.857630     URL    
[28] Treske A.Undular bore in channels-experimental studies[J]. Journal of Hydraulic Research,1994,32(3): 355-370.
doi: 10.1080/00221689409498738     URL    
[29] Chanson H.Physical modelling of the flow field in all undular tidal bore[J].Journal of Hydraulic Research, 2005,43(3): 234-244.
doi: 10.1080/00221680509500118     URL    
[30] Yang Huoqi, Pan Cunhong, Zhou Jianjiong, et al.Experiment study on hydraulic properties of tidal bore[J]. Water Resources and Power, 2008,26(4): 136-138.
[杨火其,潘存鸿,周建炯,等.涌潮水力学特性试验研究[J].水电能源科学,2008,26(4): 136-138.]
[31] Huang Jing,Pan Cunhong,Chen Gang, et al.Experimental simulation and validation of the tidal bore in the flume[J]. Hydro-science and Engineering, 2013,(2):1-8.
[黄静,潘存鸿,陈刚,等.涌潮的水槽模拟及验证[J].水利水运工程学报,2013,(2):1-8.DOI:10.16198/j.cnki.1009-640x.2013.02.002]
[32] Simpson J H, Fisher N R, Wiles P.Reynolds stress and TKE production in an estuary with a tidal bore[J]. Estuarine, Coastal and Shelf Science, 2004,60(4):619-627.
doi: 10.1016/j.ecss.2004.03.006     URL    
[33] Wolanski E, Williams D, Spagnol S, et al.Undular tidal bore dynamics in the Daly Estuary, Northern Australia[J]. Estuarine, Coastal and Shelf Science, 2004,60(4):629-636.
doi: 10.1016/j.ecss.2004.03.001     URL    
[34] Liu Wenhu,Zhu Xiaohua,Zhang Zhongzhe,et al.Observation and dynamic characteristics of tidal bore in Qiantang River,China[J]. Journal of Dalian Ocean University, 2015,30(5):567-572.
[刘文虎,朱小华,张钟哲,等.钱塘江涌潮观测及其动力学特性研究[J].大连海洋大学学报, 2015, 30(5):567-572.]
[35] Mao Xianzhong,Gong Chunsheng.Analysis of the affecting factors on Qiantang tidal bore[J]. Journal of Hydroelectric Engineering, 2011, 30(4): 109-116.
[毛献忠,龚春生.钱塘江涌潮影响因素分析[J].水力发电学报, 2011, 30(4): 109-116.]
URL    
[36] Xu Yan,Cao Ke,Li Mian,et al.Coastal ecological risk assessment: Its research progress and prospect[J].Advances in Earth Science,2016,31(2): 137-146.
[许妍,曹可,李冕,等.海岸带生态风险评价研究进展[J].地球科学进展,2016,31(2): 137-146.]
doi: 10.11867/j.issn.1001-8166.2016.02.0137    
[37] Lu Haiyan,He Qing,Pan Cunhong.Numerical modeling on flow and sediment in Jianshan Reach affected by strong tidal bore in the Qiantang River[J]. Journal of Sediment Research, 2015,(5):24-30.
[鲁海燕,何青,潘存鸿.钱塘江强涌潮河段水沙数值模拟[J].泥沙研究, 2015,(5):24-30.DOI:10.16239/j.cnki.0468-155x.2015.05.005.]
doi: 10.16239/j.cnki.0468-155x.2015.05.005     URL    
[38] Koch C, Chanson H.Turbulence mixing beneath an undular bore front[J]. Journal of Coastal Research,2008,24(4):999-1 007.
doi: 10.2112/06-0688.1     URL    
[39] Greb S F, Archer A W.Soft-sediment deformation produced by tides in a meizoseismic area, Turnagain Arm, Alaska[J]. Geology, 2007, 35(5): 425-438.
doi: 10.1130/G23209A.1     URL    
[40] Li Baohua, Wang Qiang,Li Congxian.Correlation of stratigraphic architecture of sub-deltas of Changjiang River Delta[J]. Journal of Palaeogeography, 2010,12(6):685-698.
[李保华,王强,李从先.长江三角洲亚三角洲地层结构对比[J]. 古地理学报,2010,12(6):685-698.]
doi: 10.7605/gdlxb.2010.06.005     URL    
[41] Tu Junbiao, Fan Daidu, Shang Shuai,et al.Evolution and sedimentary sequence of tidal channel-flat system at bore-affected reach of the Qiantang Estuary[J]. Earth Science—Journal of China University Geosciences, 2014, 39(3):261-270.
[涂俊彪,范代读,尚帅,等.钱塘江河口涌潮河段滩槽演替与沉积层序[J]. 地球科学——中国地质大学学报, 2014, 39(3):261-270.]
doi: 10.3799/dqkx.2014.025     URL    
[42] Fan Daidu, Tu Junbiao, Shang Shuai, et al.Characteristics of tidal-bore deposits and facies associations in the Qiantang Estuary, China[J]. Marine Geology, 2014,348(2):1-14.
doi: 10.1016/j.margeo.2013.11.012     URL    
[43] Tessier B, Terwindt J H J. An example of soft-sediment deformations in an intertidal environment: The effect of a tidal bore[J].Academie des Sciences (Paris), Compte Rendus, Series II,1994,319: 217-233.
[44] Põldsaar K, Ainsaar L.Soft-sediment deformation structures in the Cambrian (Series 2) tidal deposits (NW Estonia): Implications for identifying endogenic triggering mechanisms in ancient sedimentary record[J].Palaeoworld,2015,24(1/2):16-35.
doi: 10.1016/j.palwor.2014.12.003     URL    
[45] Donnelly C,Chanson H.Environmental impact of undular tidal bores in tropical rivers[J].Environmental Fluid Mechanics,2005,5(5):481-494.
doi: 10.1007/s10652-005-0711-0     URL    
[46] Koch C,Chanson H.Turbulence measurements in positive surges and bores[J].Journal of Hydraulic Research,2009,47(1):29-40.
doi: 10.3826/jhr.2009.2954     URL    
[47] Liu Cangzi, Dong Yongfa.Sedimentary textures and environments of the Hangzhou Bay[J]. Marine Geology & Quaternary Geology, 1990,10(4):53-65.
[刘苍字,董永发. 杭州湾的沉积结构与沉积环境分析[J].海洋地质与第四纪地质,1990,10(4):53-65.]
URL    
[48] Hurst A,Cartwright J.Sand injectites:Implications for hydrocarbon exploration and production[J]. AAPG Memoir, 2007,87:1-19.DOI:10.1306/1209846M871546.
URL    
[49] Qiao Xiufu, Guo Xianpu.On the Lower Jurassic soft sediment Deformation of Southwestern Tianshan Mountains, Xinjiang, China[J]. Geological Review, 2011,57(6):761-769.
[乔秀夫,郭宪璞.西南天山下侏罗统软沉积物变形研究[J].地质论评,2011, 57(6):761-769.]
URL    
[50] Yuan Xiaoqi, Su Dechen, He Jing,et al.The slump structures in the middle Ordovician on the Southern Margin of Ordos Basin and their seismic origin[J]. Geological Review, 2014,60(3):529-540.
[袁效奇,苏德辰,贺静,等. 鄂尔多斯南缘中奥陶统中的滑塌构造及其地震成因[J]. 地质论评,2014,60(3):529-540.]
[1] 秦磊,毛金昕,倪凤玲,徐少华,李小刚,蔡长娥,尚文亮,刘家恺. 浅谈深水块体搬运复合体的结构、成因分类以及识别方法[J]. 地球科学进展, 2020, 35(6): 632-642.
[2] 田少华,肖国桥,杨欢. GDGTs在黄土古环境重建中的研究进展[J]. 地球科学进展, 2020, 35(5): 465-477.
[3] 武雪超, 郝青振, Marković Slobodan B, 付玉, 娜米尔, 宋扬, 郭正堂. 多瑙河黄土与古环境研究进展[J]. 地球科学进展, 2020, 35(4): 363-377.
[4] 王宇航, 朱园园, 黄建东, 宋虎跃, 杜勇, 李哲. 海相碳酸盐岩稀土元素在古环境研究中的应用[J]. 地球科学进展, 2018, 33(9): 922-932.
[5] 王瑞, 余克服, 王英辉, 边立曾. 珊瑚礁的成岩作用[J]. 地球科学进展, 2017, 32(3): 221-233.
[6] 许子娟, 左昕昕, 范百龄, 丁新泉, 张晓东, 李子川, 闫翠香, 宋照亮. 植硅体圈闭碳地球化学研究进展[J]. 地球科学进展, 2017, 32(2): 151-159.
[7] 胡玉, 陈建徽, 王海鹏, 吕飞亚, 魏国英. 基于摇蚊的古环境和古气候国内外研究进展与展望[J]. 地球科学进展, 2016, 31(8): 870-884.
[8] 焦念志, 张传伦, 谢树成, 刘纪化, 张飞. 古今结合论碳汇、见微知著识海洋 *[J]. 地球科学进展, 2014, 29(11): 1294-1297.
[9] 李仁成, 樊俊, 高崇辉. 植硅体现代过程研究进展[J]. 地球科学进展, 2013, 28(12): 1287-1295.
[10] 袁子能,邢磊,张海龙,赵美训. 生物标志物稳定氢同位素研究进展及在海洋古环境重建中的应用[J]. 地球科学进展, 2012, 27(3): 276-283.
[11] 曾艳,陈敬安,朱正杰,李键. 湖泊沉积物Rb/Sr比值在古气候/古环境研究中的应用与展望[J]. 地球科学进展, 2011, 26(8): 805-810.
[12] 刘晓峰,齐荣. 沉积盆地火成构造研究综述[J]. 地球科学进展, 2011, 26(2): 166-170.
[13] 朱如凯,邹才能,白斌,苏玲,高志勇,罗忠. 全球油气勘探研究进展及对沉积储层研究的需求[J]. 地球科学进展, 2011, 26(11): 1150-1161.
[14] 张杰,贾国东. 植物正构烷烃及其单体氢同位素在古环境研究中的应用[J]. 地球科学进展, 2009, 24(8): 874-881.
[15] 周蒂,孙珍,陈汉宗. 世界著名深水油气盆地的构造特征及对我国南海北部深水油气勘探的启示[J]. 地球科学进展, 2007, 22(6): 561-572.
阅读次数
全文


摘要