地球科学进展 ›› 2007, Vol. 22 ›› Issue (1): 41 -48. doi: 10.11867/j.issn.1001-8166.2007.01.0041

综述与评述 上一篇    下一篇

热液条件下CO 2和H 2反应产烃研究进展
季福武 1, 2,周怀阳 1,杨群慧 1   
  1. 1.中国科学院广州地球化学研究所,广东 广州510640;2.中国科学院研究生院,北京 100049
  • 收稿日期:2006-06-29 修回日期:2006-11-20 出版日期:2007-01-10
  • 通讯作者: 季福武(1979-),男,江苏盱眙人,博士研究生,主要从事地球化学方面的研究.E-mail: jifuwu@gig.ac.cn E-mail:jifuwu@gig.ac.cn
  • 基金资助:

    国家自然科学基金重点项目“胡安·德富卡洋脊Endeavour 段热液生态环境变化与地球化学制约机理研究”(编号:40532011);面上项目“热液微生物与金属硫化物相互作用的模拟实验研究”(编号: 40473032)和“东北热带太平洋近表层沉积物生物扰动作用研究”(编号:40406010)联合资助.

Review on the Researches about Abiotic Synthesis of Hydrocarbons from Dissolved CO 2 and H 2 under Hydrothermal Conditions

JI Fu-wu 1, 2, ZHOU Huai-yang 1, YANG Qun-hui 1   

  1. 1.Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China;2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2006-06-29 Revised:2006-11-20 Online:2007-01-10 Published:2007-01-10

热液条件下CO2和H2形成烷烃的反应,提供了自然条件下CO2转化为有机质的一条非生物途径。研究这一过程,对于油气费托非生物成因研究和海底热液生命起源的讨论具有重要意义。已有研究表明,热力学有利的温度、压强条件和合适的催化剂,是热液条件下CO2和H2发生反应形成烷烃的必需条件。在热力学有利的条件下,铬铁矿能够催化反应形成CH4、C2H6和C3H8,但还不清楚是否存在能够促使反应产生C4H10等长链烷烃的天然矿物催化剂。含一种或多种过渡金属元素的磁铁矿,可能是值得考察的对象。另外,研究热液条件下CO2和H2反应形成烷烃的过程和机理,建立反应所形成烷烃的C、H同位素综合判识指标,是今后值得探索的研究课题。

It is energetically feasible for hydrocarbons to be synthesized from dissolved carbon dioxide and hydrogen under appropriate hydrothermal conditions. Hydrocarbons formed this way may contribute to oil and gas accumulation and provide the precursor organic compounds for the origin and evolution of life on the early earth. It is reported that the formation of hydrocarbons will be hampered for kinetic reasons, and CH4 and C2H6, C3H8 may produced from CO2 and H2 catalyzed by awaruite and chromite under hydrothermal conditions. More research work is needed to confirm whether there are some natural minerals which can catalysis dissolved carbon dioxide and hydrogen to produce C4H10 and other longer chain hydrocarbons. Magnetite that bears one or more other transitional metal elements may be potential. It is also needed to reveal the mechanism of the reaction and the C, H isotope fractions in this process, which may be useful to establish a criterion for discriminating the abiotic hydrocarbons formed from CO2 and H2 from those originated from organic matter under hydrothermal conditions.

中图分类号: 

[1]Schulz H. Short history and present trends of Fischer-Tropsch synthesis[J].Applied Catalysis A: General,1999, 186: 3-12.
[2]Davis B H. Overview of reactors for liquid phase Fischer-Tropsch synthesis[J]. Catalysis Today,2002, 71: 249-300.
[3]Suo Zhanghuai, Kou Yuan, Wang Hongli. Recent progress in catalytic synthesis of C+2 hydrocarbons from CO2 [J]. Natural Gas Chemical Industry,1998, 23(1): 51-56. [索掌怀, 寇元,王弘立. CO2催化合成C+2烃新进展[J].天然气化工,1998,23(1):51-56.]
[4]Riedel T, Claeys M, Schulz H, et al. Comparative study of Fischer-Tropsch synthesis with H2/CO and H2/CO2 syngas using Fe- and Co-based catalysts [J]. Applied Catalysis A: General,1999, 186: 201-213.
[5]Trovarelli A, Mustazza C, DolcettiJan G, et al. Carbon dioxide hydrogenation on rhodium supported on transition metal oxides : Effect of reduction temperature on product distribution [J]. Applied Catalysis,1990, 65(1): 129-142.
[6]Chang F W, Kuo M S, Tsay M T, et al. Hydrogenation of CO2 over nickel catalysts on rice huskash-alumina prepared by incipient wetness impregnation [J]. Applied Catalysis A: General,2003,247: 309-320.
[7]Lee S C, Jang J H, Lee B Y, et al. Promotion of hydrocarbon selectivity in CO2 hydrogenation by Ru component [J]. Journal of Molecular Catalysis A: Chemical,2004, 210: 131-141.
[8]Moody J B. Serpentinization: A review [J]. Lithos,1976, 9: 125-138.
[9]Neal C, Stanger G. Hydrogen generation from mantle source rocks in Omen [J]. Earth and Planetary Science Letters,1983, 66: 315-320.
[10]Janecky D R, Seyfried Jr W E. Hydrothermal serpentinization of peridotite within the oceanic crust: Experimental investigations of mineralogy and major element chemistry [J]. Geochimica et Cosmochimica Acta,1986, 50: 1 357-1 378.
[11]Chen Youyi. Origins of carbon dioxide in petroliferous basins[J]. Advances in Earth Science,2000, 15(6): 684-687. [程有义.含油气盆地二氧化碳成因研究[J].地球科学进展,2000,15(6):684-687.]
[12]Holloway J R, O’Day P A. Production of CO2 and H2 by diking-eruptive events at mid-ocean ridges: Implications for abiotic organic synthesis and global geochemical cycling[J].International Geology Review,2000, 42: 673-683.
[13]Resing J A, Lupton J E, Feely R A, et al. CO2 and 3He in hydrothermal plumes: Implications for mid-ocean ridge CO2 flux[J]. Earth and Planetary Science Letters,2004, 226: 449-464.
[14]Welhan J A. Origin of methane in hydrothermal systems [J]. Chemical Geology,1988, 71: 183-198.
[15]Botz R, Stuben D, Winckler G, et al. Hydrothermal gases offshore Milos Island, Greece [J]. Chemical Geology,1996, 130: 161-173.
[16]Charlou J L, Bougault H, Appriou P, et al. Different TDM/CH4 hydrothermal plume signatures: TAG site at 26°N and serpentinized ultrabasic diapir at 15°05′N on the Mid-Atlantic ridge[J]. Geochimica et Cosmochimica Acta,1991, 55: 3 209-3 223.
[17]Rona P A, Bougault H, Charlou J L, et al. Hydrothermal circulation, serpentinization, and degassing at a rift valley-fracture zone intersection: Mid-Atlantic ridge near 15°N, 45°W[J]. Geology,1992, 20: 783-786.
[18]Charlou J L, Fouquet Y A, Bougault H, et al. Intense CH4 degassing generated by serpentization of ultramafic rocks at the intersection of the 15°20′N fracture zone and the Mid-Atlantic Ridge [J]. Geochimica et Cosmochimica Acta, 1998, 62:2 323-2 333.
[19]Charlou J L, Donval J P, Fouquet Y, et al. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′N, MAR) [J]. Chemical Geology,2002, 191:345-359.
[20]Holm N G, Charlou J L. Initial indications of abiotic formation of hydrocarbons in the Rainbow ultramafic hydrothermal system, Mid-Atlantic Ridge [J]. Earth and Planetary Science Letters, 2001, 191:1-8.
[21]Szatmari P. Petroleum formation by Fischer-Tropsch synthesis in plate tectonics [J]. The American Association of Petroleum Geologists Bulletin,1989, 73(8): 989-998.
[22]Zhang Jinglian, Zhang Pingzhong, Lü Ximin, et al. New advance of inorganic origin on petroleum[J]. Advances in Earth Science,1998, 13(1): 44-50. [张景廉, 张平中, 吕锡敏, 等. 油气无机成因学说的新进展[J]. 地球科学进展, 1998, 13(1):44-50.]
[23]Lü Gongxuan, Chou Linjun, Zhang Bing, et al. Formation on mechanism of abiogenic of hydrocarbons and organics generation in deep strata [J]. Natural Gas Geoscience,2006, 17(1): 14-18. [吕功煊, 丑凌军, 张兵, 等. 深层及非生物成烃的催化机制[J]. 天然气地球科学, 2006, 17(1):14-18.]
[24]Corliss J B, Baross J A, Hoffman S E. An hypothesis concerning the relationship between submarine hot springs and the origin of life on Earth [J]. Oceanologica Acta,1981, 4(SP): 59-69.
[25]Joyce G. Hydrothermal vents too hot? [J]. Nature,1988, 334: 564.
[26]Miller S L, Bada J S. Submarine hot spring and the origin of life [J].Nature,1988, 334: 609-611.
[27]Corliss J B. The flow of energy, natural learning system and the creation of life on earth [J]. Acta Astronautica,1989, 19(11): 869-873.
[28]Corliss J B. Hot spring and the origin of life [J]. Nature,1990, 347: 624.
[29]McCollom T M, Ritter G, Simoneit B R T. Lipid synthesis under hydrothermal conditions by Fischer-Tropsch-Type reactions [J]. Origins of Life and Evolution of the Biosphere,1999, 29: 153-166.
[30]Shock E L, Schulte M D. Organic synthesis during fluid mixing in hydrothermal systems [J]. Journal of Geophysical Research,1998, 103(E12): 28 513-28 537.
[31]Simoneit B R T. Prebiotic organic synthesis under hydrothermal conditions: An overview [J]. Advances in Space Research,2004, 33: 88-94.
[32]Helgeson H C, kirkham D H. Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: Ⅰ  Summary of the thermodynamic/electrostatic properties of the solvent [J]. American Journal of Science,1974, 274: 1 089-1 198.
[33]Helgeson H C, Kirkham D H, Flowers G C. Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: Ⅳ Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600℃ and 5kb [J]. American Journal of Science,1981, 281: 1 249-1 516.
[34]Shock E L, Helgeson H C, Sverjensky D A. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Standard partial molal properties of inorganic neutral species [J]. Geochimica et Cosmochimica Acta,1989, 53: 2 157-2 183.
[35]Johnson J W, Norton D. Critical phenomena in hydrothermal systems: state, thermodynamic, and transport properties of H2O in the critical region [J]. American Journal of Science, 1991, 291: 541-648.
[36]Shock E L, Helgeson H C. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Standard partial molal properties of organic species [J]. Geochimica et Cosmochimica Acta, 1990, 54: 915-945.
[37]Johnson J M, Oelkers E H, Helgeson H C. SUPCRT 92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5 000 bar and 0 to 1 000℃ [J]. Computers & Geosciences, 1992, 18(7): 899-947.
[38]McCollom T M, Seewald J S. A reassessment of the potential for reduction of dissolved CO2 to hydrocarbons during serpentinization of olive [J]. Geochimica et Cosmochimica Acta,2001, 65(21): 3 769-3 778.
[39]Berndt M E, Allen D E, Seyfried Jr W E. Reduction of CO2 during serpentinization of olive at 300℃ and 500 bar [J]. Geology,1996, 24(4):351-354.
[40]Horita J, Berndt M E. Abiogenic methane formation and isotopic fractionation under hydrothermal conditions [J]. Science,1999, 285:1 055-1 057.
[41]Foustoukos D I, Seyfried Jr W E. Hydrocarbons in hydrothermal vent fluids: The role of chromium-bearing catalysts [J]. Science,2004, 304:1 002-1 005.
[42]McCollom T M, Seewald J S. Experimental constraints on the hydrothermal reactivity of organic acids and anions: Ⅰ. Formic acid and formate [J]. Geochimica et Cosmochimica Acta,2003, 67(19):3 625-3 644.
[43]Seewald J S, Zolotov M Y, McCollom T M. Experimental investigation of single carbon compounds under hydrothermal conditions [J]. Geochimica et Cosmochimica Acta,2006, 70: 446-460.
[44]Dai Jinxing. Identification and distinction of various alkane gases[J].Science in China(Series B),1992,(2):185-193.[戴金星. 各类烷烃气的鉴别[J]. 中国科学:B辑, 1992,(2):185-193.]
[45]Wang Xianbin, Li Chunyuan, Chen Jianfa, et al. On abiogenic natural gas[J].Chinese Science Bulletin,1997, 42(12): 1 233-1 241.[王先彬, 李春园, 陈践发, 等. 论非生物成因天然气[J].科学通报, 1997, 42(12):1 233-1 241.]
[46]Hu Guixing, Ou Yang Ziyuan, Wang Xianbin, et al. Carbon isotope fractionation in the process of Fischer-Tropsch reaction in primitive solar nebula [J]. Science in China (Series D),1998, 41(2): 202-207. [胡桂兴, 欧阳自远, 王先彬, 等. 原始太阳星云条件下Fischer-Tropsch反应中的碳同位素分馏 [J]. 中国科学:D辑, 1997, 27(5): 395-400.]
[47]McCollom T M, Seewald J S. Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions [J]. Earth and Planetary Science Letters,2006, 243: 74-84.
[48]Xue Chunji, Ji Jinsheng, Yang Qianjin. Subvolcanic hydrothermal metallogeny of the Cihai iron (cobalt) deposit, Xinjiang[J]. Mineral Deposits,2000, 19(2):156-164. [薛春纪, 姬金生, 杨前进. 新疆磁海铁(钴)矿床次火山热液成矿学[J]. 矿床地质, 2000, 19(2):156-164.]

[1] 李荣西, 毛景文, 赵帮胜, 陈宝赟, 刘淑文. 烃类流体在 MVT型铅锌矿成矿中角色与作用:研究进展与展望[J]. 地球科学进展, 2021, 36(4): 335-345.
[2] 梁承弘, 鹿化煜. 风成沉积物叶蜡氢同位素在揭示东亚季风区干湿变化中的原理及应用[J]. 地球科学进展, 2021, 36(1): 45-57.
[3] 李旭, 蔡进功, 宋明水, 刘惠民, 刘庆, 李政. 泥页岩烃—孔隙—表面的关系及其对残留烃评价的意义[J]. 地球科学进展, 2018, 33(5): 493-505.
[4] 蔡郁文, 王华建, 王晓梅, 何坤, 张水昌, 吴朝东. 铀在海相烃源岩中富集的条件及主控因素[J]. 地球科学进展, 2017, 32(2): 199-208.
[5] 林杰, 庄广胜, 王成善, 戴紧根. 叶蜡单体氢同位素古高程计研究进展[J]. 地球科学进展, 2016, 31(9): 894-906.
[6] 琚宜文,戚宇,房立志,朱洪建,王国昌,王桂梁. 中国页岩气的储层类型及其制约因素[J]. 地球科学进展, 2016, 31(8): 782-799.
[7] 刘菲, 陈亮, 王广才, 陈鸿汉. 地下水渗透反应格栅技术发展综述[J]. 地球科学进展, 2015, 30(8): 863-877.
[8] 随伟伟,杨桂朋,丁琼瑶,陆小兰. 海洋中氟氯烃的研究进展[J]. 地球科学进展, 2013, 28(3): 366-373.
[9] 曹 剑,吴 明,王绪龙,胡文瑄,向宝力,孙平安,施春华,鲍海娟. 油源对比微量元素地球化学研究进展[J]. 地球科学进展, 2012, 27(9): 925-937.
[10] 沈文杰,张华,孙永革,林杨挺,梁婷,杨志军,周永章. 二叠纪—三叠纪界线大火燃烧的地层记录:研究进展回顾与评述[J]. 地球科学进展, 2012, 27(6): 613-623.
[11] 占长林,曹军骥,韩永明,安芷生. 古火灾历史重建的研究进展[J]. 地球科学进展, 2011, 26(12): 1248-1259.
[12] 葛云锦,陈勇,周瑶琪,周振柱. 实验模拟碳酸盐岩储层包裹体对油气充注的响应[J]. 地球科学进展, 2011, 26(10): 1050-1056.
[13] 张杰,贾国东. 植物正构烷烃及其单体氢同位素在古环境研究中的应用[J]. 地球科学进展, 2009, 24(8): 874-881.
[14] 张建勇,刘文汇,腾格尔,王晓锋,卿颖,马凤良. 硫化氢形成与C 2+气态烷烃形成的同步性研究——几个模拟实验的启示[J]. 地球科学进展, 2008, 23(4): 390-400.
[15] 吉利明,李林涛,吴涛,张晓宝,周世新. 柴达木盆地始新统沟鞭藻及其油源意义[J]. 地球科学进展, 2007, 22(3): 221-226.
阅读次数
全文


摘要