地球科学进展 doi: 10.11867/j.issn.1001-8166.2026.011

   

盘古模型在一个海上典型风电场功率预测中的应用研究
邓华1,王晨宇2,张艳霞1   
  1. (1. 中国气象局广州热带海洋气象研究所/粤港澳大湾区气象研究院,广东 广州 510640;2. 国家超级计算无锡中心, 江苏 无锡 214072)
  • 基金资助:
    粤港澳大湾区气象科技协同攻关项目(编号:GHMA2024Z01)资助.

A Study on the Application of the Pangu Model in Power Prediction for a Typical Offshore Wind Farm

Deng Hua1, Wang Chenyu2, Zhang Yanxia1   

  1. (1. Guangzhou Institute of Tropical and Marine Meteorology China Meteorological Administration / Guangdong-Hong Kong-Macao Greater Bay Area Academy of Meteorological Research, Guangzhou 510640, China; 2. National Supercomputing Center in Wuxi, Wuxi Jiangsu 214072, China)
  • About author:Deng Hua, research areas include numerical weather prediction models for wind and solar power generation, power prediction, and data assimilation. E-mail: hdeng@gd121.cn
  • Supported by:
    Project supported by the Guangdong-Hong Kong-Macao Greater Bay Area Collaborative Project on Key Meteorological Technologies (Grant No. GHMA2024Z01).
随着风电功率预测对时效和更新频率的要求不断提高,基于数值天气预报进行预测的方法局限性愈发明显,人工智能气象模型的发展为风电功率预测提供了高效的气象预报来源。选取广东阳江一典型海上风电场作为服务对象,应用盘古模型和数值天气预报模式CMA-GD 进行2023 年和2024 年共17 个月的模拟计算,设计了4 组功率预测试验,对比分析了不同气象数据预报源、不同功率预测方法以及进行风速订正对于功率预测的改进效果。试验结果显示,在风电功率预测中盘古模型具备同等甚至超越数值天气预报模型的精准度。应用生成的场站功率曲线做功率预测时,基于盘古模式气象预报的短期功率预测准确率超过基于CMA-GD 的准确率,甚至在2024 年个别月份的预测效果与应用机器学习算法预测的功率相当。根据2023 年11 月的试验结果,基于订正的盘古模式预报和应用ResMLP 算法的功率预测模型,功率预测效果最佳,24 h 预测准确率为0.714,96 h 预测准确率为0.654,将该模型应用到2024 年1~6 月,效果稳定,可以达到电网的考核标准。研究为在风电功率预测业务中应用盘古模型或其他人工智能气象模型提供了一个可以借鉴的方案。
Abstract:With increasing demands for timeliness and update frequency in wind power prediction, the limitations of methods based on Numerical Weather Prediction (NWP) have become increasingly evident. The development of artificial intelligence meteorological models has provided an efficient source of meteorological forecasts for wind power prediction. Selecting an offshore wind farm in Yangjiang, Guangdong as the service object, the Pangu AI meteorological model and the numerical weather prediction model CMA-GD were applied to conduct simulation calculations for a total of 17 months in 2023 and 2024. Four sets of power prediction experiments were designed, which used different meteorological data forecast sources, different power prediction methods, and a wind speed correction method, to compare and analyze the improvement of wind power prediction. The experimental results show that the Pangu model achieves accuracy comparable to or even surpassing that of numerical weather prediction models. When using the generated site power curve for power prediction, the short-term power prediction accuracy based on the Pangu model meteorological forecast exceeds that based on CMA-GD, and even in some months of 2024, the prediction performance is comparable to that of using machine learning algorithms for power prediction. According to the November 2023 experimental results, the power prediction model based on corrected Pangu model forecasts and the ResMLP algorithm achieved the best power prediction performance, with a 24-hour prediction accuracy of 0.714 and a 96-hour prediction accuracy of 0.654. Applying this model to the period from January to June 2024 yielded stable results that met the grid assessment standards. This study provides a referable solution for applying the Pangu or other artificial intelligence meteorological models in wind power prediction operations.

中图分类号: 

[1] 唐学远. 中国极地冰冻圈人工智能技术应用的进展与展望[J]. 地球科学进展, 2025, 40(8): 778-794.
[2] 刘定洲, 刘虹辰, 张锦昌, 张江阳, 周鹏程, 郭鑫, 李璐, 黄彦铭. 基于U-Net卷积神经网络的海底磁异常条带自动识别方法研究——以沙茨基海隆为例[J]. 地球科学进展, 2025, 40(8): 864-876.
[3] 张井勇, 杨占梅, 吴凌云. 夏季极端高温预测模型系统及实际应用[J]. 地球科学进展, 2025, 40(5): 516-524.
[4] 黄建平, 连鑫博, 王睿, 王丹凤, 黄忠伟, 张北斗, 胡淑娟. 大气病原微生物监测预警的研究进展[J]. 地球科学进展, 2025, 40(4): 331-347.
[5] 周杰, 巨能攀, 张燕, 田华兵, 何朝阳. 泥石流视频图像跟踪检测方法研究[J]. 地球科学进展, 2025, 40(4): 388-400.
[6] 王凡, 张旭东, 任沂斌, 刘颖洁, 王浩宇, 李晓峰. 基于人工智能技术的海洋智能预报研究进展[J]. 地球科学进展, 2025, 40(2): 111-125.
[7] 朱学明, 王海龙, 郭绍敬, 张旭日. 南海中尺度涡旋预报研究进展[J]. 地球科学进展, 2025, 40(11): 1112-1128.
[8] 张井勇. 面向碳中和的气候变化预估与风险研究新框架[J]. 地球科学进展, 2025, 40(1): 15-20.
[9] 吴涛, 徐泽阳, 闫文琦, 费李莹, 刘荷冲, 赵靖舟, 李军, 杜治伟. 准噶尔盆地莫索湾地区侏罗系超压预测技术研究[J]. 地球科学进展, 2024, 39(4): 429-439.
[10] 李珺, 赵杨, 陈钊州, 张乐乐, 曹欢, 李世昌. 基于地球物理驱动的裂缝性地层三维坍塌压力预测及应用[J]. 地球科学进展, 2024, 39(11): 1196-1209.
[11] 贾黎黎, 李婷婷, 朱鑫, 易隆科, 罗思亮. 基于改进随机森林模型的多要素层次插值技术在土壤硒元素空间分布上的运用[J]. 地球科学进展, 2023, 38(12): 1259-1270.
[12] 王劲松, 姚玉璧, 王莺, 王素萍, 刘晓云, 周悦, 杜昊霖, 张宇, 任余龙. 青藏高原地区气象干旱研究进展与展望[J]. 地球科学进展, 2022, 37(5): 441-461.
[13] 摆玉龙, 路亚妮, 刘名得. 基于变分模态分解的机器学习模型择优风速预测系统[J]. 地球科学进展, 2021, 36(9): 937-949.
[14] 王丹,姜亦飞,王先桥,王素芬,何恩业,张蕴斐. 我国马尾藻金潮生态动力学研究进展[J]. 地球科学进展, 2021, 36(7): 753-762.
[15] 汪芋君, 任宏利, 王琳. 第三极地区气温和积雪的季节—年际气候预测研究[J]. 地球科学进展, 2021, 36(2): 198-210.
阅读次数
全文


摘要