地球科学进展 ›› 2024, Vol. 39 ›› Issue (11): 1196 -1209. doi: 10.11867/j.issn.1001-8166.2024.085

研究论文 上一篇    

基于地球物理驱动的裂缝性地层三维坍塌压力预测及应用
李珺( ), 赵杨( ), 陈钊州, 张乐乐, 曹欢, 李世昌   
  1. 中国石油大学(北京)油气资源与工程全国重点实验室,北京 102249
  • 收稿日期:2024-08-13 修回日期:2024-10-28 出版日期:2024-11-10
  • 通讯作者: 赵杨 E-mail:wlijun96@163.com;zhaoyang@cup.edu.cn
  • 基金资助:
    国家重点研发计划项目(2020YFA0710604)

Prediction and Application of 3D Collapse Pressure of Fractured Formation Driven by Geophysical Data

Jun LI( ), Yang ZHAO( ), Zhaozhou CHEN, Lele ZHANG, Huan CAO, Shichang LI   

  1. State Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum, Beijing 102249, China
  • Received:2024-08-13 Revised:2024-10-28 Online:2024-11-10 Published:2025-01-17
  • Contact: Yang ZHAO E-mail:wlijun96@163.com;zhaoyang@cup.edu.cn
  • About author:LI Jun, research areas include stress prediction, well wall stability analysis and other research work. E-mail: wlijun96@163.com
  • Supported by:
    the National Key Research and Development Program of China(2020YFA0710604)

井壁坍塌压力的预测对钻井安全、降低施工成本以及实现高效钻井等具有关键意义,复杂超深层地质条件下的裂缝发育状况对坍塌压力预测存在较大影响。常规的方法大多基于有限元模拟进行三维地质力学建模,并用于三维坍塌应力预测。尽管该方法精度较高,但需要巨大的算力资源,基于此提出了一种基于地震数据驱动的高效快速的地应力建模方法流程,进而用于三维坍塌压力的预测。首先,结合叠前地震和岩石力学测井的多尺度数据资料,建立融入曲率属性的组合弹簧模型,完成了三维地应力场的高效快速建模,并用于三维井周应力计算;其次,基于最大似然属性,从三维地震数据中获取裂缝发育情况,为研究区提供三维弱面属性参数;最后,将井周应力和裂缝参数带入Mohr-Coulomb准则,进行沿裂缝面滑移的坍塌模型计算,实现了裂缝性地层从一维测井数据到三维工区的坍塌压力预测。并将该方法应用于塔里木工区,结果表明,该模型地应力预测结果与实测数据吻合度较高,达到93.79%;坍塌压力预测结果与地层微电阻率扫描成像解释结果相吻合,验证了该方法预测井壁坍塌事件的可行性。实现了高精度坍塌压力的快速建模,有效地为超深复杂地区的钻井施工提供了地质工程一体化解决方案。

Borehole collapse pressure prediction plays a key role in drilling safety, reducing construction costs, and realizing efficient drilling. Fracture development under complex ultra-deep geological conditions significantly affects the prediction of borehole collapse pressure. Conventional methods rely on finite element simulations for 3D geomechanical modeling and 3D collapse stress prediction, which although, highly accurate, requires substantial computational resources. To address this issue, the study proposes an efficient and rapid in situ stress modeling method driven by seismic data, utilized for 3D collapse pressure prediction. Initially, a combined spring model with curvature properties is developed using a multi-scale data of pre-stack seismic and rock mechanics logging to model a three three-dimensional in situ stress field efficiently and rapidly. Next, based on the maximum likelihood attribute, the fracture development was obtained from 3D seismic data to provide 3D weak surface attribute parameters for the study area. Finally, the collapse model of sliding along the fracture plane was calculated using the Mohr-Coulomb criterion. This enables the collapse pressure prediction of the fractured formation from one-dimensional logging data to a three-dimensional working area. This method was applied to the woodworking area of Tari, with results showing a high agreement between model predictions measured data, reaching 93.79%. The prediction results also aligned well with formation micro-resistivity scanning imaging interpretations, verifying the method’s feasibility for predicting borehole wall collapse events. This study demonstrates that rapid, high precision modeling of collapse pressure can provide an integrated geological engineering solution for drilling in ultra-deep and complex areas.

中图分类号: 

图1 基于地应力建模的裂缝性地层三维坍塌压力预测流程图
AVO:叠前地震反演;QC:质控;C-MEM:融入曲率属性的组合弹簧模型方程
Fig. 1 Workflow of prediction of 3D collapse pressure driven by geophysics
AVO:Amplitude Variation with Offset;QC:Quality Control;C-MEM:The Curvature Attribute Integrated Mechanical Earth Model
图2 博孜区块目的层K1bs 三维裂缝分布预测
通过裂缝似然属性从地震数据中提取三维裂缝属性参数,其中FMI资料做为质控;QC:质控
Fig. 2 Prediction of 3D fracture distribution of target layer K1bs in Bozi Block
The 3D fracture attribute parameters are extracted from seismic data by fracture likelihood attribute, and FMI data is used as quality control; QC: Quality Control
图3 裂缝性地层岩石属性 35
(a)三轴试验中岩石强度随角度变化的示意图;(b)裂缝性地层中 β 角示意图
Fig. 3 Rock properties of fractured formation 35
(a) Schematic diagram of rock strength with angle in triaxial test; (b) Diagram of angle β in fractured formation
表1 A1井和 A3井两点的岩石本体强度参数与裂缝性岩石强度参数计算结果
Table 1 The strength parameters of rock body and fractured rock of Well A1 and Well A3
图4 博孜区块示意图
(a)博孜区块超大地应力大模型结果;(b)过A2井的地震资料剖面图,左下角展示了研究区目的层裂缝发育图,其中红色框覆盖面积100 km 2
Fig. 4 Schematic diagram of the research block of Bozi
(a) The results of the large in-situ stress model of Bozi block; (b)Seismic data profile of well A2. The lower left corner shows the fracture development map of the target layer in the study area, where the red box covers an area of 100 km 2
图5 20°~25°角道集叠加数据
Fig. 5 Overlapping data of track sets at 20°~25° angles
图6 博孜区块三维纵波速度反演结果
(a)三维纵波速度;(b)纵波速度过A1井剖面
Fig. 6 3D P-wave velocity inversion results of Bozi block
(a) 3D P-wave velocity; (b) P-wave velocity profile across Well A1
图7 博孜区块三维应力场预测结果
(a)最大水平应力全三维预测结果;(b)最小水平应力全三维预测结果;(c)最大水平应力在目的层K 1 bs的预测结果;(d)最小水平应力在目的层K 1 bs的预测结果
Fig. 7 Prediction results of 3D stress field of Bozi block
(a) The 3D prediction result of maximum horizontal stress; (b) The 3D prediction result of minimum horizontal stress; (c) Maximum horizontal stress prediction results of target layer K 1 bs group; (d) Minimum horizontal stress K 1 bs prediction results
图8 A1井上弹性参数、应力预测结果与实际测量值对比
Fig. 8 Comparison between the actual measured values and predicted results of elastic parameters and stresses in Well A1
图9 由地震最大似然属性得到的裂缝属性预测结果
(a)裂缝发育概率与地震数据叠合图;(b)裂缝发育概率在目的层K 1 bs的分布;(c)A3井处裂缝片提取显示;(d)FMI解释走向结果和最大似然属性分析结果对比
Fig. 9 Prediction results of fracture properties derived from seismic maximum likelihood properties
(a)Superposition map of fracture development probability and seismic data; (b)Distribution of fracture development probability in target layer K 1 bs; (c)Fracture plane display at Well A3; (d)Comparison of FMI interpretation results and maximum likelihood attribute analysis results
图10 A3井井壁稳定预测结果
Fig. 10 Prediction results of shaft wall stability of well A3
图11 含弱面地层三维坍塌压力预测结果
(a)贯穿岩石的坍塌压力当量密度三维体;(b)沿裂缝滑移的坍塌压力当量密度三维体
Fig. 11 3D collapse pressure prediction of fractured formation
(a)The 3D collapse pressure equivalent density through the rock; (b) The 3D collapse pressure equivalent density sliding along the fracture plane
表2 3种建模方法的优缺点对比
Table 2 Comparison of advantages and disadvantages of the three modeling methods
1 QIU Yi, MA Tianshou, CHEN Yingjie, et al. Wellbore stability evolution law of underbalanced horizontal well in argillaceous siltstone reservoirs[J]. Journal of Central South University (Science and Technology), 2023, 54(3): 967-983.
邱艺, 马天寿, 陈颖杰, 等. 泥质粉砂储层欠平衡水平井井壁稳定性演化规律[J]. 中南大学学报(自然科学版), 2023, 54(3): 967-983.
2 TANG Geng, GONG Hao, XU Jianian, et al. Experimental study on wellbore stability during volcanic gas well test: a case study on well Yongtan 1 in the Permian of the Sichuan Basin[J]. Natural Gas Industry, 2022, 42(3): 91-98.
唐庚, 龚浩, 徐家年, 等. 四川盆地二叠系永探1井火山岩气井完井测试井壁稳定性实验[J]. 天然气工业, 2022, 42(3): 91-98.
3 MA Tianshou, ZHANG Dongyang, YANG Yun, et al. Machine learning model based collapse pressure prediction method for inclined wells[J]. Natural Gas Industry, 2023, 43(9): 119-131.
马天寿, 张东洋, 杨赟, 等. 基于机器学习模型的斜井坍塌压力预测方法[J]. 天然气工业, 2023, 43(9): 119-131.
4 WANG Zhimin, WANG Cuili, XU Ke, et al. Characteristics and controlling factors of tectonic fractures of ultra-deep tight sandstone: case study of the lower cretaceous reservoir in Bozi-Dabei area, Kuqa depression, Tarim Basin[J]. Natural Gas Geoscience, 2023, 34(9): 1 535-1 551.
王志民, 王翠丽, 徐珂, 等. 超深层致密砂岩构造裂缝发育特征及控制因素: 以塔里木盆地库车坳陷博孜—大北地区下白垩统储集层为例[J]. 天然气地球科学, 2023, 34(9): 1 535-1 551.
5 LI Yong, XU Ke, ZHANG Hui, et al. Special geological factors in drilling engineering of ultra-deep oil and gas reservoir in Tarim Baisn[J]. China Petroleum Exploration, 2022, 27(3): 88-98.
李勇, 徐珂, 张辉, 等. 塔里木盆地超深层油气钻探工程的特殊地质因素[J]. 中国石油勘探, 2022, 27(3): 88-98.
6 FENG Jiarui, GAO Zhiyong, CUI Jinggang, et al. Reservoir porosity evolution characteristics and evaluation of the Jurassic deep reservoir from Dibei in Kuqa depression: insight from diagenesis modeling experiments under the influence of burial mode[J]. Advances in Earth Science, 2018, 33(3): 305-320.
冯佳睿, 高志勇, 崔京钢, 等. 库车坳陷迪北侏罗系深部储层孔隙演化特征与有利储层评价: 埋藏方式制约下的成岩物理模拟实验研究[J]. 地球科学进展, 2018, 33(3): 305-320.
7 LIU Xianghua, LIU Biao, DU Huan, et al. Optimal and fast drilling technologies for ultra-deep horizontal wells in the fault zones of the Shunbei oil & gas field[J]. Petroleum Drilling Techniques, 2022, 50(4): 11-17.
刘湘华, 刘彪, 杜欢, 等. 顺北油气田断裂带超深水平井优快钻井技术[J]. 石油钻探技术, 2022, 50(4): 11-17.
8 WANG Weiji, LI Daqi, JIN Junbin, et al. Technical problems and measures of wellbore stability of broken formation in Shunbei oil and gas field[J]. Science Technology and Engineering, 2022, 22(13): 5 205-5 212.
王伟吉, 李大奇, 金军斌, 等. 顺北油气田破碎性地层井壁稳定技术难题与对策[J]. 科学技术与工程, 2022, 22(13): 5 205-5 212.
9 YANG Bin, XU Chengyuan, ZHANG Hao, et al. Research progress on mechanism of wellbore instability in deep fractured formations and related countermeasures[J]. Acta Petrolei Sinica, 2024, 45(5): 875-888.
杨斌, 许成元, 张浩, 等. 深部破碎地层井壁失稳机理研究进展与攻关对策[J]. 石油学报, 2024, 45(5): 875-888.
10 ZHANG J C. Borehole stability analysis accounting for anisotropies in drilling to weak bedding planes[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 60: 160-170.
11 DING L Q, LV J G, WANG Z Q, et al. Borehole stability analysis: considering the upper limit of shear failure criteria to determine the safe borehole pressure window[J]. Journal of Petroleum Science and Engineering, 2022, 212. DOI:10.1016/j.petrol.2022.110219 .
12 LEE H, ONG S H, AZEEMUDDIN M, et al. A wellbore stability model for formations with anisotropic rock strengths[J]. Journal of Petroleum Science and Engineering, 2012, 96: 109-119.
13 ZHANG Mingming, LI Daqi, FAN Xiangyu. Study on collapse pressure and instability area around wellbore in fault zone[J]. Fault-Block Oil & Gas Field, 2024,1-11.
张明明, 李大奇, 范翔宇. 破碎带地层井壁坍塌压力及井周失稳区域研究[J]. 断块油气田, 2024,1-11.
14 ABBAS A K, FLORI R E, ALSABA M. Stability analysis of highly deviated boreholes to minimize drilling risks and nonproductive time[J]. Journal of Energy Resources Technology, 2019, 141(8). DOI:10.1115/1.4042733 .
15 MCLAUGHLIN J F, BENTLEY R D, QUILLINAN S A. Regional geologic history, CO2 source inventory, and groundwater risk assessment of a potential CO2 sequestration site on the rock springs uplift in southwest Wyoming[M]// Springer environmental science and engineering. New York: Springer, 2013: 33-54.
16 STONE T, XIAN C G, FANG Z, et al. Coupled geomechanical simulation of stress dependent reservoirs[C]//Proceedings of SPE reservoir simulation symposium. Society of Petroleum Engineers, 2003.
17 LIANG X, XIAN C G, SHU H L, et al. Three-dimensional full-field and pad geomechanics modeling assists effective shale gas field development, Sichuan Basin, China[C]// International petroleum technology conference. Bangkok, Thailand:IPTC, 2016.
18 JIANG T W, XIAN C G, YANG X T, et al. A geoengineering long March to success: an overview of the development of Keshen gas field in Kucha foreland basin[C]// International petroleum technology conference. Beijing, 2019.
19 WANG M W, LUO G, CHEN Z W, et al. Stability analysis of salt structure drilling and its application to the Keshen 10 block of Kuqa depression in Tarim Basin[J]. Rock Mechanics and Rock Engineering, 2024, 57(2): 1 171-1 194.
20 CAI Wenjun, DENG Jingen, FENG Yongcun, et al. Three-dimensional geomechanical modeling and application in shale formation[J]. Drilling & Production Technology, 2023, 46(1): 8-14.
蔡文军, 邓金根, 冯永存, 等. 泥页岩地层区域三维地质力学建模与应用[J]. 钻采工艺, 2023, 46(1): 8-14.
21 DU Shuang, LIU Houbin, WANG Shuai, et al. Study on 3D Distribution of ground stress and wellbore stability in Daxingchang Block, west Sichuan [C]// China University of Geosciences (Wuhan), Xi’an Shiyou University, Shaanxi Petroleum Society. Proceedings of 2023 international conference on exploration and development of oil and gas fields II. State Key Laboratory of Oil-Gas Reservoir Geology and Development Engineering, Southwest Petroleum University, 2023.
杜爽, 刘厚彬, 王帅, 等. 川西大兴场区块地应力及井壁稳定三维展布规律研究[C]//中国地质大学(武汉), 西安石油大学, 陕西省石油学会. 2023油气田勘探与开发国际会议论文集Ⅱ.西南石油大学油气藏地质及开发工程国家重点实验室, 2023.
22 GAO L Y, SHI X C, LIU J F, et al. Simulation-based three-dimensional model of wellbore stability in fractured formation using discrete element method based on formation microscanner image: a case study of Tarim Basin, China[J]. Journal of Natural Gas Science and Engineering, 2022, 97. DOI: 10.1016/j.jngse.2021.104341 .
23 YU Guimin. A wellbore stability analysis model using particle discrete element method[J]. Oil Drilling & Production Technology, 2023, 45(2): 129-135.
喻贵民. 一种颗粒离散元的井壁稳定性分析模型[J]. 石油钻采工艺, 2023, 45(2): 129-135.
24 SHUAI D, XIAN C G, ZHAO Y, et al. Using 3-D seismic data to estimate stress based on the curvature attribute integrated mechanical earth model[J]. Geophysical Journal International, 2023, 233(2): 885-899.
25 AKI K, RICHARDS P. Quantitive seismology: theory and methods[M]. San Francisco: W. H. Freeman,1981.
26 LIU Shaojun, LIU Yong, ZHAO Shengxian, et al. Distribution characteristics and pattern of deep shale present geostress field in northern Luzhou[J]. Advances in Earth Science, 2023, 38(12): 1 271-1 284.
刘绍军, 刘勇, 赵圣贤, 等. 泸州北区深层页岩现今地应力场分布特征及扰动规律[J]. 地球科学进展, 2023, 38(12): 1 271-1 284.
27 JIA Xiaojun. Development and application of intelligent monitoring information system for drilling overflow and loss[J]. China CIO News, 2024(3):24-27.
贾小军. 钻井溢流井漏智能监测信息系统研制与应用[J].信息系统工程, 2024(3):24-27.
28 EATON B A. The equation for geopressure prediction from well logs[C]// Fall meeting of the society of petroleum engineers of AIME. Dallas, Texas: SPE, 1975.
29 CHEN Qi, XIONG Chenhao, ZUO Tianxin. The stress prediction technique based on 3D structural restoration[J]. Journal of Oil and Gas Technology, 2023, 45(1): 85-95.
陈琪, 熊晨皓, 左田昕. 基于三维构造恢复的地应力预测技术[J]. 石油天然气学报, 2023, 45(1): 85-95.
30 CAO Huan, ZHAO Yang, SHUAI Da, et al. Using 3D seismic data to estimate stress based on seismic curvature attribute of HTI medium: application to the Weiyuan, southern Sichuan Basin, China[J]. Chinese Journal of Geophysics, 2024, 67(5): 1 970-1 986.
曹欢, 赵杨, 帅达, 等. 基于HTI介质地震曲率属性的地应力估算方法及其在威远地区的应用[J]. 地球物理学报, 2024, 67(5): 1 970-1 986.
31 YIN Shuai, LIU Hanlin, HE Jianhua, et al. Comprehensive evaluation of geo-stress in tight oil sandstone under constraints of dynamic-static geomechanical methods[J]. Advances in Earth Science, 2023, 38(12): 1 285-1 296.
尹帅, 刘翰林, 何建华, 等. 动静态地质力学方法约束的致密油砂岩地应力综合评估[J]. 地球科学进展, 2023, 38(12): 1 285-1 296.
32 DING Wenlong, WANG Xinghua, HU Qiujia, et al. Progress in tight sandstone reservoir fractures research[J]. Advances in Earth Science, 2015, 30(7): 737-750.
丁文龙, 王兴华, 胡秋嘉, 等. 致密砂岩储层裂缝研究进展[J]. 地球科学进展, 2015, 30(7): 737-750.
33 QING Chun, LUO Xin, ZHANG Hang, et al. Application of maximum likelihood attribute based on structure orientation in the design of drilling trajectory optimization[J]. Progress in Geophysics, 2024, 39(4): 1 501-1 511.
青春, 罗鑫, 张航, 等. 基于构造导向的最大似然属性在钻井轨迹优化设计中的应用[J]. 地球物理学进展, 2024, 39(4): 1 501-1 511.
34 LI S C, ZHAO Y, XIAN C G, et al. Small-scale fracture detection via anisotropic Bayesian ant-tracking colony optimization driven by azimuthal seismic data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61. DOI: 10.1109/TGRS.2023.3317313 .
35 JAEGER J C, COOK N G W, ZIMMERMAN R W. Fundamentals of rock mechanics[M]. 4th ed. Malden, MA: Blackwell Publishing, 2007.
36 JIN Yan, CHEN Mian, CHEN Zhixi, et al. Stability mechanical model of vertical well wall in weak surface formation[J]. Drilling Production Technology, 1999,22(3): 13-14.
金衍, 陈勉, 陈治喜, 等. 弱面地层的直井井壁稳定力学模型[J]. 钻采工艺, 1999, 22(3): 13-14.
37 BRADLEY W B. Failure of inclined boreholes[J]. Journal of Energy Resources Technology, 1979, 101(4): 232-239.
38 MCNALLY G H. Estimation of coal measures rock strength using sonic and neutron logs[J]. Geoexploration, 1987, 24(4/5): 381-395.
39 TIEN Y M, KUO M C, JUANG C H. An experimental investigation of the failure mechanism of simulated transversely isotropic rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(8): 1 163-1 181.
40 FJÆR E, HOLT R, HORSRUD P. Petroleum related rock mechanics[M]. Elsevier Science Publishers B.V., 2008.
41 WANG Z H, QIU Y L, GUO P, et al. Experimental investigation of the damage mechanisms of drilling mud in fractured tight gas reservoir[J]. Journal of Energy Resources Technology, 2019, 141(9). DOI:10.1115/1.4043247 .
42 LI Kunchao. Study on fracture mechanism and wellbore initiation pressure of ultra-deep fractured sandstone in Tarim Oilfield[D]. Beijing:China University of Petroleum (Beijing), 2018.
李坤潮. 塔里木超深裂缝性砂岩破裂机制与井筒起裂压力研究[D]. 北京:中国石油大学(北京), 2018.
43 XU Ke, YANG Haijun, ZHANG Hui, et al. Current in situ stress field and efficient development of Bozi-1 gas reservoir in Kelasu structural belt[J]. Xinjiang Petroleum Geology, 2021, 42(6): 726-734.
徐珂, 杨海军, 张辉, 等. 克拉苏构造带博孜1气藏现今地应力场和高效开发[J]. 新疆石油地质, 2021, 42(6): 726-734.
44 XU Ke. Current in-situ stress of Gaoshangpu reservoir, Nanpu Sag, Bohai Bay Basin, China[D]. Qingdao: China University of Petroleum (Huadong), 2019.
徐珂.南堡凹陷高尚堡油藏现今地应力研究[D].青岛:中国石油大学(华东), 2019.
45 CAO Feng, HE Jianhua, WANG Yuanyuan, et al. Methods to evaluate present-day in situ stress direction for low anisotropic reservoirs in the second member of the Xujiahe formation in Hechuan area[J]. Advances in Earth Science, 2022, 37(7): 742-755.
曹峰, 何建华, 王园园, 等. 合川地区须二段低各向异性储层现今地应力方向评价方法[J]. 地球科学进展, 2022, 37(7): 742-755.
[1] 尹寿鹏,王贵文. 测井沉积学研究综述[J]. 地球科学进展, 1999, 14(5): 440-445.
[2] 李珺, 赵杨, 陈钊州, 张乐乐, 曹欢, 李世昌. 基于地球物理驱动的裂缝性地层三维坍塌 压力预测及应用[J]. 地球科学进展, 0, (): 1-.
阅读次数
全文


摘要