地球科学进展 ›› 2024, Vol. 39 ›› Issue (11): 1183 -1195. doi: 10.11867/j.issn.1001-8166.2024.084

研究论文 上一篇    下一篇

基于 HYDRUS模型的 19792018年黄河源头区冻土热状态变化
雷汶杰 1 , 2( ), 罗栋梁 1( ), 陈方方 1 , 2, 刘佳 1 , 2, 彭贻菲 1 , 3, 李世珍 1 , 2, 沈琦 1 , 4   
  1. 1.中国科学院西北生态环境资源研究院 冰冻圈科学与冻土工程重点实验室,甘肃 兰州 730000
    2.中国科学院大学,北京 100049
    3.辽宁工程技术大学 测绘与地理科学学院,辽宁 阜新 123000
    4.兰州交通大学 测绘与地理信息学院,甘肃 兰州 730070
  • 收稿日期:2024-01-11 修回日期:2024-08-07 出版日期:2024-11-10
  • 通讯作者: 罗栋梁 E-mail:leiwejie@nieer.ac.cn;leiwenjie@nieer.ac.cn;luodongliang@lzb.ac.cn
  • 基金资助:
    甘肃省科技重大专项(23ZDFA017);国家自然科学基金项目(U2243214);中国科学院西部青年学者项目资助

Changes in the Thermal Regime of Permafrost in the Headwater Area of the Yellow River in 1979-2018 Based on the HYDRUS Model

Wenjie LEI 1 , 2( ), Dongliang LUO 1( ), Fangfang CHEN 1 , 2, Jia LIU 1 , 2, Yifei PENG 1 , 3, Shizhen LI 1 , 2, Qi SHEN 1 , 4   

  1. 1.Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
    3.School of Geomatics, Liaoning Technical University, Fuxin Liaoning 123000, China
    4.Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
  • Received:2024-01-11 Revised:2024-08-07 Online:2024-11-10 Published:2025-01-17
  • Contact: Dongliang LUO E-mail:leiwejie@nieer.ac.cn;leiwenjie@nieer.ac.cn;luodongliang@lzb.ac.cn
  • About author:LEI Wenjie, research areas include changes in cold region environment. E-mail: leiwejie@nieer.ac.cn
  • Supported by:
    the Science and Technology Program of Gansu Province(23ZDFA017);The National Natural Science Foundation of China(U2243214);The Western Young Scholars project of the Chinese Academy of Sciences of China

土壤热状态是指示多年冻土存在及其热稳定性的最关键指标。为探究黄河源头区冻土热状态的较长期变化,首先构建了土壤热传导数学模型并基于HYDRUS-1D模型求解,经参数率定验证,表明该模型具有较好的可靠性和适用性,然后利用中国区域地面气象要素驱动数据集(CMFD)驱动模拟了黄河源头区6个钻孔1979—2018年冻土地温的变化。结果表明,黄河源头区冻土热状态在1999年发生转变:1999年前温度变化速率为-0.037~0.026 °C/a,1999年后升温速率为0.006~0.120 °C/a。分析表明1998年的气候变暖突变及1999年的极端气候灾害突变是黄河源头区冻土地温在1999年发生突变的主要原因;冻土地温升高,冻土热稳定性下降,将深刻影响冻土水源涵养功能。该研究可厘清高原冻土对气候变化的响应规律,为加强黄河源头区生态环境分区管控提供科技支撑。

The thermal regime of soil is vital for determining the presence and thermal stability of permafrost. To study long-term changes in the permafrost thermal regime in the Headwater Area of the Yellow River (HAYR), a mathematical model for soil heat transfer to simulate the dynamics of ground temperatures at six boreholes using the HYDRUS-1D model. The model’s reliability and applicability were confirmed through parameter calibration. Changes in the permafrost thermal regime from 1979 to 2018 in the HAYR were then simulated using monthly air temperature data from the China Meteorological Forcing Dataset (CMFD). Model simulations revealed an abrupt change in the mean annual ground temperature in the HAYR after 1999. Prior to 1999, the changing rates were from -0.037 to 0.026 °C/a, whereas after 1999, they ranged from 0.0059 to 0.12 °C/a. The abrupt increase in mean annual air temperature in 1998 and the occurrence of extreme climate disasters in 1999 were identified as the primary reasons for the sudden changes in the permafrost thermal regime in 1999. The rise in permafrost temperature and decrease in its thermal stability are expected to impact water resource conservation and biogeochemical cycles. This study provides scientific and technological support for understanding the response patterns of plateau permafrost to climate change and strengthening the zoning and control of the ecological environment in the HAYR.

中图分类号: 

1 ZHANG Yinsheng, MA Yingzhao, ZHANG Yanlin, et al. Hillslope patterns in thaw-freeze cycle and hydrothermal regimes on Tibetan Plateau[J]. Chinese Science Bulletin, 2015, 60(7): 664-673.
张寅生, 马颖钊, 张艳林, 等. 青藏高原坡面尺度冻融循环与水热条件空间分布[J]. 科学通报, 2015, 60(7): 664-673.
2 BIBI S, WANG L, LI X P, et al. Climatic and associated cryospheric, biospheric, and hydrological changes on the Tibetan Plateau: a review[J]. International Journal of Climatology, 2018, 38(): E1-E17.
3 CAO Wei, SHENG Yu, WU Jichun, et al. Soil moisture infiltration characteristics of different types of frozen soil in the source area of the Yellow River[J]. Acta Ecologica Sinica, 2021, 41(2): 655-664.
曹伟, 盛煜, 吴吉春, 等. 黄河源区不同类型冻土土壤水分入渗特性[J]. 生态学报, 2021, 41(2): 655-664.
4 WU Hailian, LIU Shengming. Eco-environmental situation in the source area of the Yellow River[J]. Journal of Grassland and Forage Science, 2011(7): 42-43.
吴海莲, 刘生明. 黄河源区生态环境形势[J]. 草业与畜牧, 2011(7): 42-43.
5 WU Q B, HOU Y D, YUN H B, et al. Changes in active-layer thickness and near-surface permafrost between 2002 and 2012 in alpine ecosystems, Qinghai-Xizang (Tibet) Plateau, China[J]. Global and Planetary Change, 2015, 124: 149-155.
6 CHENG Guodong, ZHAO Lin, LI Ren, et al. Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau[J]. Chinese Science Bulletin, 2019, 64(27): 2 783-2 795.
程国栋, 赵林, 李韧, 等. 青藏高原多年冻土特征、变化及影响[J]. 科学通报, 2019, 64(27): 2 783-2 795.
7 LUO Dongliang, LEI Wenjie, KANG Jianfang, et al. A review of the spatial differentiation of ground surface temperature in alpine permafrost regions[J]. Pratacultural Science, 2023, 40(4): 942-964.
罗栋梁, 雷汶杰, 康建芳, 等. 高山多年冻土区地面温度研究进展[J]. 草业科学, 2023, 40(4): 942-964.
8 HOELZLE M, MITTAZ C, ETZELMÜLLER B, et al. Surface energy fluxes and distribution models of permafrost in European Mountain areas: an overview of current developments[J]. Permafrost and Periglacial Processes, 2001, 12(1): 53-68.
9 RAN Youhua, LI Xin. Progress, challenges and opportunities of permafrost mapping in China[J]. Advances in Earth Science, 2019, 34(10): 1 015-1 027.
冉有华, 李新. 中国多年冻土制图: 进展、挑战与机遇[J]. 地球科学进展, 2019, 34(10): 1 015-1 027.
10 ZHU Zhiwu, NING Jianguo, MA Wei. Constitutive model and numerical analysis for the coupled problem of water, temperature and stress fields in the process of soil freeze-thaw[J]. Engineering Mechanics, 2007, 24(5): 138-144, 137.
朱志武, 宁建国, 马巍. 土体冻融过程中水、热、力三场耦合本构问题及数值分析[J]. 工程力学, 2007, 24(5): 138-144, 137.
11 LI Shunqun, ZHANG Xuncheng, CHEN Zhixiang, et al. Model tests and similarity criteria for nonlinear freezing of rock and soil[J]. Engineering Mechanics, 2019, 36(1): 192-199.
李顺群, 张勋程, 陈之祥, 等. 岩土的非线性冻结模型试验和相似准则[J]. 工程力学, 2019, 36(1): 192-199.
12 QIN Yanhui, WU Tonghua, LI Ren, et al. Thermal condition of the active layer on the Qinghai-Tibet Plateau simulated by using the model of GIPL2[J]. Journal of Glaciology and Geocryology, 2017, 39(5): 1 153-1 166.
秦艳慧, 吴通华, 李韧, 等. 基于GIPL2模型的青藏高原活动层土壤热状况模拟研究[J]. 冰川冻土, 2017, 39(5): 1 153-1 166.
13 GUO D L, WANG A H, LI D, et al. Simulation of changes in the near-surface soil freeze/thaw cycle using CLM4.5 with four atmospheric forcing data sets[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(5): 2 509-2 523.
14 MYHRA K S, WESTERMANN S, ETZELMÜLLER B. Modelled distribution and temporal evolution of permafrost in steep rock walls along a latitudinal transect in Norway by CryoGrid 2D[J]. Permafrost and Periglacial Processes, 2017, 28(1): 172-182.
15 WESTERMANN S, LANGER M, BOIKE J, et al. Simulating the thermal regime and thaw processes of ice-rich permafrost ground with the land-surface model CryoGrid 3[J]. Geoscientific Model Development, 2016, 9(2): 523-546.
16 LAI X M, LIAO K H, FENG H H, et al. Responses of soil water percolation to dynamic interactions among rainfall, antecedent moisture and season in a forest site[J]. Journal of Hydrology, 2016, 540: 565-573.
17 CAO Wei, SHENG Yu, WU Jichun, et al. Seasonal variation of soil hydrological processes of active layer in source region of the Yellow River[J]. Advances in Water Science, 2018, 29(1): 1-10.
曹伟, 盛煜, 吴吉春, 等. 黄河源区多年冻土活动层土壤水文过程季节变异分析[J]. 水科学进展, 2018, 29(1): 1-10.
18 GAO Zhenguo, ZHONG Ruilin, YANG Shuai, et al. Recent progresses in research and applications of hydrus model in China[J]. Soils, 2022, 54(2): 219-231.
高震国, 钟瑞林, 杨帅, 等. Hydrus模型在中国的最新研究与应用进展[J]. 土壤, 2022, 54(2): 219-231.
19 ŠIMŮNEK J, van GENUCHTEN M T, ŠEJNA M. Recent developments and applications of the HYDRUS computer software packages[J]. Vadose Zone Journal, 2016, 15(7): 1-25.
[1] 李耀辉, 何思奇, 徐影. 航空与气候变暖研究进展[J]. 地球科学进展, 2024, 39(11): 1112-1122.
[2] 张强, 马芳, 王莺, 宋连春, 马鹏里. 浅论气候容量及其对气候安全风险管理的作用[J]. 地球科学进展, 2015, 30(6): 709-714.
[3] 张强, 韩兰英, 张立阳, 王劲松. 论气候变暖背景下干旱和干旱灾害风险特征与管理策略[J]. 地球科学进展, 2014, 29(1): 80-91.
[4] 朱忠礼,林柳莺,徐同仁. 海河流域不同下垫面土壤水分动态模拟研究[J]. 地球科学进展, 2012, 27(7): 778-787.
[5] 邓振镛,王鹤龄,李国昌,辛吉武,张宇飞,徐金芳. 气候变暖对河西走廊棉花生产影响的成因与对策研究[J]. 地球科学进展, 2008, 23(2): 160-166.
[6] 赵 鸿,王润元,王鹤龄,杨启国,邓振镛,肖国举. 西北干旱半干旱区春小麦生长对气候变暖响应的区域差异[J]. 地球科学进展, 2007, 22(6): 636-641.
[7] 马丽,方修琦. 近20年气候变暖对北京时令旅游的影响——以北京市植物园桃花节为例[J]. 地球科学进展, 2006, 21(03): 313-319.
[8] 张强;韩永翔;宋连春. 全球气候变化及其影响因素研究进展综述[J]. 地球科学进展, 2005, 20(9): 990-998.
[9] 秦大河,丁一汇,王绍武,王苏民,董光荣,林而达,刘春蓁,佘之祥,孙惠南,王守荣,伍光和. 中国西部生态环境变化与对策建议[J]. 地球科学进展, 2002, 17(3): 314-319.
[10] 温家洪. 国际南极冰盖与海平面变化研究述评[J]. 地球科学进展, 2000, 15(5): 586-591.
[11] 任振球. 当代气候变化若干问题商榷[J]. 地球科学进展, 1996, 11(5): 504-507.
阅读次数
全文


摘要