地球科学进展 doi: 10.11867/j.issn.1001-8166.2025.034

   

页岩粉碎及热处理的流体核磁响应 及其原位含油性启示
白龙辉1,柳波1*,刘明博1,苏勇2,王柳1,霍迎冬2,徐鹏程1,付晓飞1   
  1. (1. 多资源协同陆相页岩油绿色开采全国重点实验室 东北石油大学,黑龙江 大庆 163318; 2. 大庆油田勘探开发研究院,黑龙江 大庆 163375)
  • 基金资助:
    国家自然科学基金面上项目区域创新联合基金项目(编号:U22A20574);黑龙江省重点研发计划项目(编号:GA23A906)资助.

Nuclear Magnetic Resonance Characteristics and In Situ Oil Content Analysis of Shale Crushing and Heat Treatment

BAI Longhui1, LIU Bo1*, LIU Mingbo1, SU Yong2, WANG Liu1, HUO Yingdong2, XU Pengcheng1, FU Xiaofei1   

  1. (1. State Key Laboratory of continental Shale Oil, Northeast Petroleum University, Daqing Heilongjiang 163318, China; 2. Exploration and Development Research Institute of Daqing Oilfield, Daqing Heilongjiang 163375, China)
  • About author:BAI Longhui, research areas include shale oil reservoir characterization. E-mail: bailonghui0302@163.com
  • Supported by:
    Project supported by the National Natural Science Foundation of China Regional Innovation Joint Fund Project  (Grant No.U22A20574); The Heilongjiang Provincial Key R & D Program (Grant No. GA23A906).
处于开放环境的页岩样品,一方面由于压力释放导致轻烃发生大量散失,另一方面由于温 度降低导致滞留烃黏度增大、赋存状态改变,从而使常温下核磁检测无法准确定量原位温压条件 下的页岩含油性。以松辽盆地白垩系青山口组页岩为例,选取处于低成熟和高成熟阶段典型页岩 样品。对不同粉碎程度的高成熟页岩,以及不同温度条件下低成熟、高成熟页岩样品进行核磁共 振序列检测,定量页岩样品粉碎过程和加热过程中流体散失和赋存状态转化,确定页岩温度作用 下的含油性特征。结果表明,页岩从标准柱塞粉碎到0.04 cm的过程中,其T2谱的形态、T1-T2谱总 信号量和各含氢组分的信号量基本没有发生变化。因此,久置页岩样品在粉碎过程中不会导致残 留流体进一步散失。随着页岩样品温度的升高,低成熟页岩中轻质油信号增加、水信号减少,高成 熟页岩中油和水信号均减少。同时页岩含羟基化合物信号减少,待恢复室温后其信号量重新恢 复。由此可见,随着温度升高,自由水持续挥发;低成熟页岩常温黏度较大的油前沥青由类固态转 变为液态轻质油,100 ℃后核磁轻质油绝对量增加达107%;高成熟页岩油常温即为轻质油,升温将 致其挥发散失。含羟基化合物随着温度升降的减增,反映了温度对于黏土吸附水的控制作用。因 此利用核磁共振评价低成熟页岩含油性时,要注意室温条件下油前沥青在温度作用下的赋存状态 转化,避免页岩油含量的低估。
Abstract: Shale samples in an open environment, on the one hand, experience significant loss of light hydrocarbons due to pressure release, and on the other hand, due to temperature reduction, the viscosity of retained hydrocarbons increases and their state changes, making it difficult to accurately quantify shale oil content under in-situ temperature and pressure conditions using nuclear magnetic resonance at room temperature. This study takes the Qingshankou Formation shale of the Cretaceous from the Songliao Basin as an example, typical shale samples in the low and high maturity stages were selected. Nuclear magnetic resonance detection were performed on high mature shale samples with different degrees of pulverization, as well as low and high mature shale samples under different temperature conditions, to quantify the fluid loss and state transformation during the pulverization and heating processes, and determine the oil content characteristics under the influence of temperature. The results showed that during the process of crushing shale from standard plunger to ~0.04 cm, the morphology of its T2 spectrum, the total signal amount of T1-T2 spectrum, and the signal amount of each hydrogen containing component remained basically unchanged. Therefore, prolonged exposure to shale samples during the crushing process will not result in significant residual fluid loss. As the temperature of shale samples increases, the light oil signal increases and the water signal decreases in low mature shale, while the oil and water signals decrease in high mature shale. At the same time, the signal of hydroxyl compounds in shale decreased, and its signal level was restored after returning to room temperature. It can be seen that as the temperature increases, free water continues to evaporate; The pre-oil bitumen of low mature shale with high viscosity at room temperature changes from a solid-like state to a liquid light oil. After 100 ℃, the absolute amount of NMR light oil increases by 107%; In high mature, the shale oil bitumen becomes light oil at room temperature, and heating will cause it to evaporate and dissipate. The decrease and increase of hydroxyl containing compounds with temperature rise and fall reflects the controlling effect of temperature on clay adsorption of water. Therefore, when using NMR to evaluate the oil content of low mature shale, attention should be paid to the transformation of the pre-oil bitumen under temperature conditions to avoid underestimating the shale oil content.

中图分类号: 

[1] 陈斐然, 刘珠江, 陆永潮, 魏富彬, 李飞, 郭金才, 苏泽昕. 川东北地区中—上二叠统层序地层格架内多重地质事件耦合的富有机质页岩成因模式[J]. 地球科学进展, 2024, 39(5): 519-531.
[2] 刘绍军, 刘勇, 赵圣贤, 张鉴, 邓乃尔, 邓虎成, 何建华, 徐浩, 曹埒焰, 何沅翰, 尹美璇. 泸州北区深层页岩现今地应力场分布特征及扰动规律[J]. 地球科学进展, 2023, 38(12): 1271-1284.
[3] 王青山, 常超, 吴来源, 张兴亮. 利用CiteSpace可视化分析中国黑色页岩研究现状[J]. 地球科学进展, 2023, 38(12): 1224-1242.
[4] 周龙政, 蔡进功, 李旭, 晁静, 李政. 泥页岩中水的赋存态研究进展及其意义[J]. 地球科学进展, 2022, 37(7): 709-725.
[5] 段美铃, 宋昊, 胡伟, 廖昕. 川北韩家店组页岩风化过程的矿物学与元素地球化学研究[J]. 地球科学进展, 2022, 37(6): 641-659.
[6] 邓腾, 丁正鹏, 许德如. 浅论造山型金矿中碳质黑色页岩的来源及其在金成矿过程中的作用[J]. 地球科学进展, 2021, 36(10): 1077-1091.
[7] 陈愿愿, 杨晓, 邓小江, 王小兰, 何奇, 程莉莉, 陈科贵. 海鸥优化算法在四川盆地渝西区块 H井区页岩气储层最优化测井解释中的应用[J]. 地球科学进展, 2020, 35(7): 761-768.
[8] 李亚龙, 刘先贵, 胡志明, 端祥刚, 张杰, 詹鸿铭. 页岩气水平井产能预测数值模型综述[J]. 地球科学进展, 2020, 35(4): 350-362.
[9] 程超, 于文刚, 贾婉婷, 林海宇, 李莲庆. 岩石热物理性质的研究进展及发展趋势[J]. 地球科学进展, 2017, 32(10): 1072-1083.
[10] 琚宜文, 戚宇, 房立志, 朱洪建, 王国昌, 王桂梁. 中国页岩气的储层类型及其制约因素[J]. 地球科学进展, 2016, 31(8): 782-799.
[11] 孙寅森, 郭少斌. 基于图像分析技术的页岩微观孔隙特征定性及定量表征[J]. 地球科学进展, 2016, 31(7): 751-763.
[12] 张林晔, 李钜源, 李政, 张金功, 朱日房, 包友书. 北美页岩油气研究进展及对中国陆相页岩油气勘探的思考*[J]. 地球科学进展, 2014, 29(6): 700-711.
[13] 张林晔, 李钜源, 李政, 张金功, 朱日房, 包友书. 北美页岩油气研究进展及对中国陆相页岩油气勘探的思考*[J]. 地球科学进展, 2014, 2014(6): 700-711.
[14] 徐祖新, 郭少斌. 基于NMR和X-CT的页岩储层孔隙结构研究*[J]. 地球科学进展, 2014, 29(5): 624-631.
[15] 琚宜文, 卜红玲, 王国昌. 页岩气储层主要特征及其对储层改造的影响[J]. 地球科学进展, 2014, 29(4): 492-506.
阅读次数
全文


摘要