[1] |
LI J, GEER A J, OKAMOTO K, et al. Satellite all-sky infrared radiance assimilation: recent progress and future perspectives[J]. Advances in Atmospheric Sciences, 2022, 39(1): 9-21.
|
[2] |
EYRE J R, BELL W, COTTON J, et al. Assimilation of satellite data in numerical weather prediction. Part II: recent years[J]. Quarterly Journal of the Royal Meteorological Society, 2022, 148(743): 521-556.
|
[3] |
SMITH W L, WOOLF H M, JACOB W J. A regression method for obtaining real-time temperature and geopotential height profiles from satellite spectrometer measurements and its application to Nimbus 3 “sirs” observations[J]. Monthly Weather Review, 1970, 98(8): 582-603.
|
[4] |
SMITH W L, WOOLF H M, HAYDEN C M, et al. The Tiros-N operational vertical sounder[Z]. Bulletin of the American Meteorological Society, 1979.
|
[5] |
CHAHINE M T, PAGANO T S, AUMANN H H, et al. AIRS: improving weather forecasting and providing new data on greenhouse gases[J]. Bulletin of the American Meteorological Society, 2006, 87(7). DOI:10.1175/BAMS-87-7-911 .
|
[6] |
LERNER J A, WEISZ E, KIRCHENGAST G. Temperature and humidity retrieval from simulated Infrared Atmospheric Sounding Interferometer (IASI) measurements[J]. Journal of Geophysical Research: Atmospheres, 2002, 107(D14). DOI:10.1029/2001JD900254 .
|
[7] |
BLOOM H. The Cross-track Infrared Sounder (CrIS): a sensor for operational meterological remote sensing[C]// IEEE international geoscience & remote sensing symposium. IEEE, 2001. DOI:10.1109/IGARSS.2001.976838 .
|
[8] |
QI C L, WU C Q, HU X Q, et al. High spectral Infrared Atmospheric Sounder (HIRAS): system overview and on-orbit performance assessment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(6): 4 335-4 352.
|
[9] |
ZHANG C M, QI C L, YANG T H, et al. Evaluation of FY-3E/HIRAS-II radiometric calibration accuracy based on OMB analysis[J]. Remote Sensing, 2022, 14(13). DOI: 10.3390/rs14133222 .
|
[10] |
YANG J, ZHANG Z Q, WEI C Y, et al. Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4[J]. Bulletin of the American Meteorological Society, 2017, 98(8): 1 637-1 658.
|
[11] |
MENZEL W P, SCHMIT T J, ZHANG P, et al. Satellite-based atmospheric infrared sounder development and applications[J]. Bulletin of the American Meteorological Society, 2018, 99(3): 583-603.
|
[12] |
CHAHINE M T. Remote sounding of cloudy atmospheres. I. the single cloud layer[J]. Journal of the Atmospheric Sciences, 1974, 31(1): 233-243.
|
[13] |
CHAHINE M T. Remote sounding of cloudy atmospheres. II. multiple cloud formations[J]. Journal of the Atmospheric Sciences, 1977, 34(5): 744-757.
|
[14] |
PHULPIN T, DERRIEN M, BRARD A. A two-dimensional histogram procedure to analyze cloud cover from NOAA satellite high-resolution imagery[J]. Journal of Climate and Applied Meteorology, 1983, 22(8): 1 332-1 345.
|
[15] |
SAUNDERS R W, KRIEBEL K T. An improved method for detecting clear sky and cloudy radiances from AVHRR data[J]. International Journal of Remote Sensing, 1988, 9(1): 123-150.
|
[16] |
STOWE L L, MCCLAIN E P, CAREY R, et al. Global distribution of cloud cover derived from NOAA/AVHRR operational satellite data[J]. Advances in Space Research, 1991, 11(3): 51-54.
|
[17] |
GARAND L, WEINMAN J A. A structural-stochastic model for the analysis and synthesis of cloud images[J]. Journal of Climate and Applied Meteorology, 1986, 25(7): 1 052-1 068.
|
[18] |
EBERT E. A pattern recognition technique for distinguishing surface and cloud types in the polar regions[J]. Journal of Climate and Applied Meteorology, 1987, 26(10): 1 412-1 427.
|
[19] |
LEMON R E, BUEDE D E. The Advanced Very High Resolution Radiometer (AVHRR): instrument description and initial results[J]. Journal of Geophysical Research, 1980, 85(B10): 5 173-5 186.
|
[20] |
DERRIEN M, FARKI B, HARANG L, et al. Automatic cloud detection applied to NOAA-11/AVHRR imagery[J]. Remote Sensing of Environment, 1993, 46(3): 246-267.
|
[21] |
LI J, WOLF W W, MENZEL W P, et al. Global soundings of the atmosphere from ATOVS measurements: the algorithm and validation[J]. Journal of Applied Meteorology, 2000, 39(8): 1 248-1 268.
|
[22] |
SMITH W L, PLATT C M R. Comparison of satellite-deduced cloud heights with indications from radiosonde and ground-based laser measurements[J]. Journal of Applied Meteorology, 1978, 17(12): 1 796-1 802.
|
[23] |
MCNALLY A P, WATTS P D. A cloud detection algorithm for high-spectral-resolution infrared sounders[J]. Quarterly Journal of the Royal Meteorological Society, 2003, 129(595): 3 411-3 423.
|
[24] |
EYRE J R, MENZEL W P. Retrieval of cloud parameters from satellite sounder data: a simulation study[J]. Journal of Applied Meteorology, 1989, 28(4): 267-275.
|
[25] |
YAN X S, CHEN Y D, MA G, et al. A 3-D cloud detection method for FY-4A GIIRS and its application in operational numerical weather prediction system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61. DOI: 10.1109/TGRS.2023.3307563 .
|
[26] |
HAN B, KANG L S, SONG H Z. A fast cloud detection approach by integration of image segmentation and support vector machine[C]// Advances in neural networks—ISNN 2006. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006: 1 210-1 215.
|
[27] |
ZHANG Q, YU Y, ZHANG W M, et al. Cloud detection from FY-4A’s geostationary interferometric infrared sounder using machine learning approaches[J]. Remote Sensing, 2019, 11(24). DOI:10.3390/rs11243035 .
|
[28] |
WYLIE D P, MENZEL W P, WOOLF H M, et al. Four years of global Cirrus cloud statistics using HIRS[J]. Journal of Climate, 1994, 7(12): 1 972-1 986.
|
[29] |
DERBER J C, TREADON R, VANDELST P, et al. Assimilation of advanced sounders at NCEP[Z]. ECMWF, 2004:57-62.
|
[30] |
MCNALLY A P. The direct assimilation of cloud-affected satellite infrared radiances in the ECMWF 4D-Var[J]. Quarterly Journal of the Royal Meteorological Society, 2009, 135(642): 1 214-1 229.
|
[31] |
LIN L, ZOU X L, WENG F Z. Combining CrIS double CO2 bands for detecting clouds located in different layers of the atmosphere[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(3): 1 811-1 827.
|
[32] |
HUANG J, MA G, LIU G Q, et al. The evaluation of FY-3E hyperspectral infrared atmospheric sounder-II long-wave temperature sounding channels[J]. Remote Sensing, 2023, 15(23). DOI:10.3390/rs15235525 .
|
[33] |
HUANG J, MA G, LIU G, et al. Direct assimilation of FY-3E hyperspectral infrared atmospheric sounder-II radiance data in CMA-GFS system[J]. Weather and Forecasting, 2025, under review.
|
[34] |
XIA X L, ZOU X L. Development of CO2 band-based cloud emission and scattering indices and their applications to FY-3D hyperspectral infrared atmospheric sounder[J]. Remote Sensing, 2020, 12(24). DOI:10.3390/rs12244171 .
|
[35] |
LI J, MENZEL W P, YANG Z D, et al. High-spatial-resolution surface and cloud-type classification from MODIS multispectral band measurements[J]. Journal of Applied Meteorology, 2003, 42(2): 204-226.
|
[36] |
LI J, MENZEL W P, SUN F Y, et al. AIRS subpixel cloud characterization using MODIS cloud products[J]. Journal of Applied Meteorology, 2004, 43(8): 1 083-1 094.
|
[37] |
RANSON K J, BHATTI D, CHERVENAK A, et al. MODIS instrument performance and calibration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(3): 754-760.
|
[38] |
WANG L K, TREMBLAY D A, HAN Y, et al. Geolocation assessment for CrIS sensor data records[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(22). DOI: 10.1002/2013JD020376 .
|
[39] |
WANG L K, TREMBLAY D, ZHANG B, et al. Fast and accurate collocation of the visible infrared imaging radiometer suite measurements with cross-track infrared sounder[J]. Remote Sensing, 2016, 8(1). DOI: 10.3390/rs8010076 .
|
[40] |
WANG P, LI J, LI J L, et al. Advanced infrared sounder subpixel cloud detection with imagers and its impact on radiance assimilation in NWP[J]. Geophysical Research Letters, 2014, 41(5): 1 773-1 780.
|
[41] |
ERESMAA R. Imager-assisted cloud detection for assimilation of Infrared Atmospheric Sounding Interferometer radiances[J]. Quarterly Journal of the Royal Meteorological Society, 2014, 140(684): 2 342-2 352.
|
[42] |
HUANG H L, SMITH W. Apperception of clouds in AIRS data[Z]. ECMWF, 2004: 155-170.
|
[43] |
YIN R, HAN W, GAO Z, et al. The evaluation of FY4A’s Geostationary Interferometric Infrared Sounder (GIIRS) long-wave temperature sounding channels using the GRAPES global 4D-Var[M]. John Wiley & Sons, Ltd., 2020. DOI:10.1002/qj.3746 .
|
[44] |
MIN M, WU C Q, LI C, et al. Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series[J]. Journal of Meteorological Research, 2017, 31(4): 708-719.
|
[45] |
MATRICARDI M, MCNALLY T. The direct assimilation of IASI short wave principal component scores into the ECMWF NWP model[Z]. EUMETSAT Contract 2011. No. EUM/CO/07/4600000475/PS.
|
[46] |
WANG Liwen, MA Gang, XU Daosheng, et al. Impact of a new three-dimensional cloud detection method of FY4A GIIRS in the CMA-GFS[J].Weather and Forecasting, 2025. DOI:10.1175/WAF-O-24-0087.1 .
|
[47] |
HAN H, LEE S, IM J, et al. Detection of convective initiation using meteorological imager onboard communication, ocean, and meteorological satellite based on machine learning approaches[J]. Remote Sensing, 2015, 7(7): 9 184-9 204.
|
[48] |
SHAO Z F, PAN Y, DIAO C Y, et al. Cloud detection in remote sensing images based on multiscale features-convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(6): 4 062-4 076.
|
[49] |
YANG J Y, GUO J H, YUE H J, et al. CDnet: CNN-based cloud detection for remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 6 195-6 211.
|
[50] |
LIU Q, XU H, SHA D X, et al. Hyperspectral infrared sounder cloud detection using deep neural network model[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 19. DOI:10.1109/LGRS.2020.3023683 .
|
[51] |
SHI X H, FAN Y L, SUN L, et al. Cloud detection sample generation algorithm for nighttime satellite imagery based on daytime data and machine learning application[J]. Scientific Reports, 2024, 14(1). DOI:10.1038/s41598-024-78889-z .
|
[52] |
SHI H X, YU Y, ZHANG W M, et al. Cloud detection from a hyperspectral infrared atmospheric sounder using a machine-learning model[C]// 2021 international conference on Computer Information Science and Artificial Intelligence (CISAI). Kunming, China: IEEE, 2021: 107-116.
|
[53] |
GEER A J, BAUER P, LOPEZ P. Direct 4D-var assimilation of all-sky radiances. Part II: assessment[J]. Quarterly Journal of the Royal Meteorological Society, 2010, 136(652): 1 886-1 905.
|
[54] |
OKAMOTO K, ISHIBASHI T, OKABE I, et al. Extension of all-sky radiance assimilation to hyperspectral infrared sounders[J]. Quarterly Journal of the Royal Meteorological Society, 2024, 150(765): 5 472-5 497.
|
[55] |
GEER A J, MIGLIORINI S, MATRICARDI M. All-sky assimilation of infrared radiances sensitive to mid- and upper-tropospheric moisture and cloud[J]. Atmospheric Measurement Techniques, 2019, 12(9): 4 903-4 929.
|
[56] |
MATRICARDI M. The inclusion of aerosols and clouds in RTIASI, the ECMWF fast radiative transfer model for the infrared atmospheric sounding interferometer[M]. ECMWF Technical Memoranda, 2005.
|
[57] |
BAUER P, GEER A J, LOPEZ P, et al. Direct 4D-var assimilation of all-sky radiances. Part I: implementation[J]. Quarterly Journal of the Royal Meteorological Society, 2010, 136(652): 1 868-1 885.
|
[58] |
OKAMOTO K, MCNALLY A P, BELL W. Progress towards the assimilation of all-sky infrared radiances: an evaluation of cloud effects[J]. Quarterly Journal of the Royal Meteorological Society, 2014, 140(682): 1 603-1 614.
|
[59] |
SUSSKIND J, JOINER J, CHAHINE M T. Determination of temperature and moisture profiles in a cloudy atmosphere using AIRS/AMSU[C]// High spectral resolution infrared remote sensing for Earth’s weather and climate studies. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993: 149-161.
|
[60] |
SUSSKIND J, BARNET C, BLAISDELL J. Determination of atmospheric and surface parameters from simulated AIRS/AMSU/HSB sounding data: retrieval and cloud clearing methodology[J]. Advances in Space Research, 1998, 21(3): 369-384.
|
[61] |
SUSSKIND J, BARNET C D, BLAISDELL J M. Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(2): 390-409.
|
[62] |
SUSSKIND J, BARNET C, BLAISDELL J, et al. Accuracy of geophysical parameters derived from Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit as a function of fractional cloud cover[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D9). DOI:10.1029/2005JD006272 .
|
[63] |
SMITH W L. An improved method for calculating tropospheric temperature and moisture from satellite radiometer measurements[J]. Monthly Weather Review, 1968, 96(6): 387-396.
|
[64] |
DONG Chaohua, LI Jun, ZHANG Peng, et al. Principle and application of satellite hyperspectral infrared atmospheric remote sensing[M]. Beijing: Science Press, 2013.
|
|
董超华, 李俊, 张鹏, 等. 卫星高光谱红外大气遥感原理和应用[M]. 北京: 科学出版社, 2013.
|
[65] |
LIU H, COLLARD A, DERBER J. Variational cloud‐clearing with CrIS data at NCEP[R]. New Orleans, LA: AMS Annual Meeting, 2016.
|
[66] |
LI J, LIU C Y, HUANG H L, et al. Optimal cloud-clearing for AIRS radiances using MODIS[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(6): 1 266-1 278.
|
[67] |
WANG P, LI J, LI Z L, et al. Impacts of observation errors on hurricane forecasts when assimilating hyperspectral infrared sounder radiances in partially cloudy skies[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(20): 10 802-10 813.
|
[68] |
WANG P, LI J, LI Z L, et al. The impact of Cross-track Infrared Sounder (CrIS) cloud-cleared radiances on hurricane Joaquin (2015) and Matthew (2016) forecasts[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(24): 13 201-13 218.
|
[69] |
GOLDBERG M D, KING T S, WOLF W W, et al. Using MODIS with AIRS to develop an operational cloud-cleared radiance product[C]// Multispectral and hyperspectral remote sensing instruments and applications II. Honolulu, USA: SPIE, 2005.
|
[70] |
MADDY E S, KING T S, SUN H B, et al. Improved soundings using collocated imager and sounder data from MetOp-A[C]// Imaging and applied optics. Toronto: OSA, 2011. DOI:10.1364/HISE.2011.HTuA3 .
|
[71] |
LIU H X, COLLARD A, DERBER J. Comparison among three CrIS Cloud-Clearing Radiance (CCR) products & allsky SEVIRI radiance assimilation at NCEP[Z/OL]. 2017. [2024-10-20]. .
|
[72] |
REALE O, MCGRATH-SPANGLER E L, MCCARTY W, et al. Impact of adaptively thinned AIRS cloud-cleared radiances on tropical cyclone representation in a global data assimilation and forecast system[J]. Weather and Forecasting, 2018, 33(4): 909-931.
|
[73] |
GONG X, LI J, LI Z, et al. Cloud-cleared radiance of geostationary hyperspectral infrared sounder based on collocated image[C]// Proceeding of 19th annual meeting of the Asia Oceania Geosciences Society (AOGS). Singapore, 2022.
|
[74] |
GONG X Y, LI Z L, LI J, et al. Cloud-cleared radiances from collocated observations of hyperspectral IR sounder and advanced imager onboard the same geostationary platform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 6. DOI:10.1109/TGRS.2024.3458093 .
|
[75] |
DI D, LI J, LI Z L, et al. Enhancing clear radiance generation for geostationary hyperspectral infrared sounder using high temporal resolution information[J]. Geophysical Research Letters, 2024, 51(2). DOI:10.1029/2023GL107194 .
|
[76] |
MATRICARDI M. A principal component based version of the RTTOV fast radiative transfer model[J]. Quarterly Journal of the Royal Meteorological Society, 2010, 136(652): 1 823-1 835.
|
[77] |
BERMUDO F, ROUSSEAU S, PEQUIGNOT E, et al. IASI-NG program: a new generation of Infrared Atmospheric Sounding Interferometer[C]// 2014 IEEE geoscience and remote sensing symposium. Quebec City, Canada: IEEE, 2014: 1 373-1 376.
|